1.
|
Rebecca H. Chisholm, Tommaso Lorenzi, Jean Clairambault,
Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation,
2016,
1860,
03044165,
2627,
10.1016/j.bbagen.2016.06.009
|
|
2.
|
Bei Cheng, Feng Gao, Erica Maissy, Peisheng Xu,
Repurposing suramin for the treatment of breast cancer lung metastasis with glycol chitosan-based nanoparticles,
2019,
84,
17427061,
378,
10.1016/j.actbio.2018.12.010
|
|
3.
|
Delfim Torres, Cristiana Silva,
Optimal control strategies for tuberculosis treatment: A case study in Angola,
2012,
2,
2155-3289,
601,
10.3934/naco.2012.2.601
|
|
4.
|
Frédérique Billy, Jean Clairambault, Olivier Fercoq,
2013,
Chapter 10,
978-1-4614-4177-9,
265,
10.1007/978-1-4614-4178-6_10
|
|
5.
|
Jerzy Klamka, Helmut Maurer, Andrzej Swierniak,
Local controllability and optimal control for\newline a model of combined anticancer therapy with control delays,
2017,
14,
1551-0018,
195,
10.3934/mbe.2017013
|
|
6.
|
Z. Foroozandeh, M. Shamsi, Maria Do Rosário De Pinho,
A Hybrid Direct–Indirect Approach for Solving the Singular Optimal Control Problems of Finite and Infinite Order,
2018,
42,
1028-6276,
1545,
10.1007/s40995-017-0176-2
|
|
7.
|
Valeriya Lykina,
2018,
Chapter 24,
978-3-319-73440-8,
228,
10.1007/978-3-319-73441-5_24
|
|
8.
|
Costanza Simoncini, Krzysztof Jurczuk, Daniel Reska, Simon Esneault, Jean-Claude Nunes, Jean-Jacques Bellanger, Hervé Saint-Jalmes, Yan Rolland, Pierre-Antoine Eliat, Johanne Bézy-Wendling, Marek Kretowski,
Towards a patient-specific hepatic arterial modeling for microspheres distribution optimization in SIRT protocol,
2018,
56,
0140-0118,
515,
10.1007/s11517-017-1703-1
|
|
9.
|
Frédérique Billy, Jean Clairambault,
Designing proliferating cell population models with functional targets for control by anti-cancer drugs,
2013,
18,
1553-524X,
865,
10.3934/dcdsb.2013.18.865
|
|
10.
|
F.A. Rihan, S. Lakshmanan, H. Maurer,
Optimal control of tumour-immune model with time-delay and immuno-chemotherapy,
2019,
353,
00963003,
147,
10.1016/j.amc.2019.02.002
|
|
11.
|
Katerina D. Argyri, Dimitra D. Dionysiou, Fay D. Misichroni, Georgios S. Stamatakos,
Numerical simulation of vascular tumour growth under antiangiogenic treatment: addressing the paradigm of single-agent bevacizumab therapy with the use of experimental data,
2016,
11,
1745-6150,
10.1186/s13062-016-0114-9
|
|
12.
|
Valeriya Lykina, Sabine Pickenhain,
2016,
Budget-constrained infinite horizon optimal control problems with linear dynamics,
978-1-5090-1837-6,
1906,
10.1109/CDC.2016.7798543
|
|
13.
|
Helmut Maurer, Andrzej Świerniak,
2017,
Chapter 77,
978-3-319-60698-9,
799,
10.1007/978-3-319-60699-6_77
|
|
14.
|
Marzena Dołbniak, Andrzej Świerniak,
Comparison of Simple Models of Periodic Protocols for Combined Anticancer Therapy,
2013,
2013,
1748-670X,
1,
10.1155/2013/567213
|
|
15.
|
Urszula Ledzewicz, Helmut Maurer, Heinz Schättler,
Optimal Combined Radio- and Anti-Angiogenic Cancer Therapy,
2019,
180,
0022-3239,
321,
10.1007/s10957-018-1426-y
|
|
16.
|
Clara Rojas, Juan Belmonte-Beitia, Víctor M. Pérez-García, Helmut Maurer,
Dynamics and optimal control of chemotherapy for low grade gliomas: Insights from a mathematical model,
2016,
21,
1531-3492,
1895,
10.3934/dcdsb.2016028
|
|
17.
|
T model of growth and its application in systems of tumor-immunedynamics,
2013,
10,
1551-0018,
925,
10.3934/mbe.2013.10.925
|
|
18.
|
Lance L Munn,
Dynamics of tissue topology during cancer invasion and metastasis,
2013,
10,
1478-3967,
065003,
10.1088/1478-3975/10/6/065003
|
|
19.
|
Z. Foroozandeh, M. Shamsi, M. d. R. de Pinho,
A mixed-binary non-linear programming approach for the numerical solution of a family of singular optimal control problems,
2019,
92,
0020-7179,
1551,
10.1080/00207179.2017.1399216
|
|
20.
|
Camille Pouchol, Jean Clairambault, Alexander Lorz, Emmanuel Trélat,
Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy,
2018,
116,
00217824,
268,
10.1016/j.matpur.2017.10.007
|
|
21.
|
Valeriya Lykina, Sabine Pickenhain,
Pontryagin Type Maximum Principle for budget-constrained infinite horizon optimal control problems with linear dynamics,
2018,
457,
0022247X,
1591,
10.1016/j.jmaa.2017.08.002
|
|
22.
|
U. Felgenhauer,
Structural Stability Investigation of Bang-Singular-Bang Optimal Controls,
2012,
152,
0022-3239,
605,
10.1007/s10957-011-9925-0
|
|
23.
|
C. Yalçın Kaya, Helmut Maurer,
A numerical method for nonconvex multi-objective optimal control problems,
2014,
57,
0926-6003,
685,
10.1007/s10589-013-9603-2
|
|
24.
|
Luis A. Fernández, Cecilia Pola,
Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint,
2014,
19,
1553-524X,
1563,
10.3934/dcdsb.2014.19.1563
|
|
25.
|
Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo,
Numerical solution for a problem arising in angiogenic signalling,
2019,
4,
2473-6988,
43,
10.3934/Math.2019.1.43
|
|
26.
|
Van M. Savage, Alexander B. Herman, Geoffrey B. West, Kevin Leu,
Using fractal geometry and universal growth curves as diagnostics for comparing tumor vasculature and metabolic rate with healthy tissue and for predicting responses to drug therapies,
2013,
18,
1553-524X,
1077,
10.3934/dcdsb.2013.18.1077
|
|
27.
|
Aitziber Ibañez,
Optimal control of the Lotka–Volterra system: turnpike property and numerical simulations,
2017,
11,
1751-3758,
25,
10.1080/17513758.2016.1226435
|
|
28.
|
X. Dupuis, L. Pujo-Menjouet,
Optimal Control of Leukemic Cell Population Dynamics,
2014,
9,
0973-5348,
4,
10.1051/mmnp/20149102
|
|
29.
|
Urszula Ledzewicz, Heinz Schättler,
On the Role of the Objective in the Optimization of Compartmental Models for Biomedical Therapies,
2020,
187,
0022-3239,
305,
10.1007/s10957-020-01754-2
|
|
30.
|
Dieter Grass, Valeriya Lykina,
Infinite horizon cancer treatment model with isoperimetrical constraint: existence of optimal solutions and numerical analysis,
2019,
92,
0020-7179,
1401,
10.1080/00207179.2017.1396362
|
|
31.
|
Clara Rojas Rodríguez, Juan Belmonte-Beitia,
Optimizing the delivery of combination therapy for tumors: A mathematical model,
2017,
10,
1793-5245,
1750039,
10.1142/S1793524517500395
|
|
32.
|
Clara Rojas Rodríguez, Gabriel Fernández Calvo, Ignacio Ramis-Conde, Juan Belmonte-Beitia,
Stochastic modelling of slow-progressing tumors: Analysis and applications to the cell interplay and control of low grade gliomas,
2017,
49,
10075704,
63,
10.1016/j.cnsns.2017.02.008
|
|
33.
|
Clara Rojas, Juan Belmonte-Beitia,
Optimal control problems for differential equations applied to tumor growth: state of the art,
2018,
3,
2444-8656,
375,
10.21042/AMNS.2018.2.00029
|
|
34.
|
Parametrization of the attainable set for a nonlinear control model of a biochemical process,
2013,
10,
1551-0018,
1067,
10.3934/mbe.2013.10.1067
|
|
35.
|
Alessandro Borri, Pasquale Palumbo, Federico Papa,
Deterministic vs stochastic formulations and qualitative analysis of a recent tumour growth model,
2020,
53,
24058963,
16418,
10.1016/j.ifacol.2020.12.724
|
|
36.
|
Adam Glick, Antonio Mastroberardino,
Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors,
2020,
0,
1553-524X,
0,
10.3934/dcdsb.2020343
|
|
37.
|
Filippo Cacace, Valerio Cusimano, Pasquale Palumbo,
Optimal Impulsive Control With Application to Antiangiogenic Tumor Therapy,
2020,
28,
1063-6536,
106,
10.1109/TCST.2018.2861410
|
|
38.
|
Federico Papa, Alessandro Borri, Pasquale Palumbo,
Tumour growth control: analysis of alternative approaches,
2023,
562,
00225193,
111420,
10.1016/j.jtbi.2023.111420
|
|
39.
|
Valeriya Lykina, Sabine Pickenhain, Katharina Kolo, Dieter Grass,
Sustainability and long-term strategies in the modeling of biological processes,
2022,
55,
24058963,
665,
10.1016/j.ifacol.2022.09.172
|
|
40.
|
A. Camacho, E. Díaz-Ocampo, S. Jerez, Vitaly Volpert,
Optimal control for a bone metastasis with radiotherapy model using a linear objective functional,
2022,
17,
0973-5348,
32,
10.1051/mmnp/2022038
|
|
41.
|
Poh Ling Tan, Helmut Maurer, Jeevan Kanesan, Joon Huang Chuah,
Optimal Control of Cancer Chemotherapy with Delays and State Constraints,
2022,
194,
0022-3239,
749,
10.1007/s10957-022-02046-7
|
|
42.
|
Wenhui Luo, Xuewen Tan, Xiufen Zou, Qing Tan,
Optimal Treatment of Prostate Cancer Based on State Constraint,
2023,
11,
2227-7390,
4025,
10.3390/math11194025
|
|
43.
|
Piernicola Bettiol, Richard Vinter,
2024,
Chapter 1,
978-3-031-50088-6,
1,
10.1007/978-3-031-50089-3_1
|
|
44.
|
Pauline Mazel, Walid Djema, Frédéric Grognard,
2024,
Optimal control for a combination of cancer therapies in a model of cell competition*,
979-8-3503-1633-9,
1351,
10.1109/CDC56724.2024.10886792
|
|
45.
|
Martin Dodek, Zuzana Vitková, Anton Vitko, Jarmila Pavlovičová, Eva Miklovičová,
Personalization of Optimal Chemotherapy Dosing Based on Estimation of Uncertain Model Parameters Using Artificial Neural Network,
2025,
15,
2076-3417,
3145,
10.3390/app15063145
|
|