Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy

  • Received: 01 March 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : Primary: 92C50; Secondary: 49K15, 49M99.

  • We consider the problem of minimizing the tumor volume with a priori given amounts of anti-angiogenic and cytotoxic agents. For one underlying mathematical model, optimal and suboptimal solutions are given for four versions of this problem: the case when only anti-angiogenic agents are administered, combination treatment with a cytotoxic agent, and when a standard linear pharmacokinetic equation for the anti-angiogenic agent is added to each of these models. It is shown that the solutions to the more complex models naturally build upon the simplified versions. This gives credence to a modeling approach that starts with the analysis of simplified models and then adds increasingly more complex and medically relevant features. Furthermore, for each of the problem formulations considered here, there exist excellent simple piecewise constant controls with a small number of switchings that virtually replicate the optimal values for the objective.

    Citation: Urszula Ledzewicz, Helmut Maurer, Heinz Schättler. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 307-323. doi: 10.3934/mbe.2011.8.307

    Related Papers:

    [1] Mahya Mohammadi, M. Soltani, Cyrus Aghanajafi, Mohammad Kohandel . Investigation of the evolution of tumor-induced microvascular network under the inhibitory effect of anti-angiogenic factor, angiostatin: A mathematical study. Mathematical Biosciences and Engineering, 2023, 20(3): 5448-5480. doi: 10.3934/mbe.2023252
    [2] Heinz Schättler, Urszula Ledzewicz, Benjamin Cardwell . Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Mathematical Biosciences and Engineering, 2011, 8(2): 355-369. doi: 10.3934/mbe.2011.8.355
    [3] Shuo Wang, Heinz Schättler . Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040
    [4] Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014
    [5] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [6] Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson . An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences and Engineering, 2015, 12(6): 1219-1235. doi: 10.3934/mbe.2015.12.1219
    [7] Donggu Lee, Aurelio A. de los Reyes V, Yangjin Kim . Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network. Mathematical Biosciences and Engineering, 2024, 21(3): 3876-3909. doi: 10.3934/mbe.2024173
    [8] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
    [9] Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi . On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences and Engineering, 2013, 10(3): 803-819. doi: 10.3934/mbe.2013.10.803
    [10] Urszula Ledzewicz, Behrooz Amini, Heinz Schättler . Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences and Engineering, 2015, 12(6): 1257-1275. doi: 10.3934/mbe.2015.12.1257
  • We consider the problem of minimizing the tumor volume with a priori given amounts of anti-angiogenic and cytotoxic agents. For one underlying mathematical model, optimal and suboptimal solutions are given for four versions of this problem: the case when only anti-angiogenic agents are administered, combination treatment with a cytotoxic agent, and when a standard linear pharmacokinetic equation for the anti-angiogenic agent is added to each of these models. It is shown that the solutions to the more complex models naturally build upon the simplified versions. This gives credence to a modeling approach that starts with the analysis of simplified models and then adds increasingly more complex and medically relevant features. Furthermore, for each of the problem formulations considered here, there exist excellent simple piecewise constant controls with a small number of switchings that virtually replicate the optimal values for the objective.


  • This article has been cited by:

    1. Rebecca H. Chisholm, Tommaso Lorenzi, Jean Clairambault, Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation, 2016, 1860, 03044165, 2627, 10.1016/j.bbagen.2016.06.009
    2. Bei Cheng, Feng Gao, Erica Maissy, Peisheng Xu, Repurposing suramin for the treatment of breast cancer lung metastasis with glycol chitosan-based nanoparticles, 2019, 84, 17427061, 378, 10.1016/j.actbio.2018.12.010
    3. Delfim Torres, Cristiana Silva, Optimal control strategies for tuberculosis treatment: A case study in Angola, 2012, 2, 2155-3289, 601, 10.3934/naco.2012.2.601
    4. Frédérique Billy, Jean Clairambault, Olivier Fercoq, 2013, Chapter 10, 978-1-4614-4177-9, 265, 10.1007/978-1-4614-4178-6_10
    5. Jerzy Klamka, Helmut Maurer, Andrzej Swierniak, Local controllability and optimal control for\newline a model of combined anticancer therapy with control delays, 2017, 14, 1551-0018, 195, 10.3934/mbe.2017013
    6. Z. Foroozandeh, M. Shamsi, Maria Do Rosário De Pinho, A Hybrid Direct–Indirect Approach for Solving the Singular Optimal Control Problems of Finite and Infinite Order, 2018, 42, 1028-6276, 1545, 10.1007/s40995-017-0176-2
    7. Valeriya Lykina, 2018, Chapter 24, 978-3-319-73440-8, 228, 10.1007/978-3-319-73441-5_24
    8. Costanza Simoncini, Krzysztof Jurczuk, Daniel Reska, Simon Esneault, Jean-Claude Nunes, Jean-Jacques Bellanger, Hervé Saint-Jalmes, Yan Rolland, Pierre-Antoine Eliat, Johanne Bézy-Wendling, Marek Kretowski, Towards a patient-specific hepatic arterial modeling for microspheres distribution optimization in SIRT protocol, 2018, 56, 0140-0118, 515, 10.1007/s11517-017-1703-1
    9. Frédérique Billy, Jean Clairambault, Designing proliferating cell population models with functional targets for control by anti-cancer drugs, 2013, 18, 1553-524X, 865, 10.3934/dcdsb.2013.18.865
    10. F.A. Rihan, S. Lakshmanan, H. Maurer, Optimal control of tumour-immune model with time-delay and immuno-chemotherapy, 2019, 353, 00963003, 147, 10.1016/j.amc.2019.02.002
    11. Katerina D. Argyri, Dimitra D. Dionysiou, Fay D. Misichroni, Georgios S. Stamatakos, Numerical simulation of vascular tumour growth under antiangiogenic treatment: addressing the paradigm of single-agent bevacizumab therapy with the use of experimental data, 2016, 11, 1745-6150, 10.1186/s13062-016-0114-9
    12. Valeriya Lykina, Sabine Pickenhain, 2016, Budget-constrained infinite horizon optimal control problems with linear dynamics, 978-1-5090-1837-6, 1906, 10.1109/CDC.2016.7798543
    13. Helmut Maurer, Andrzej Świerniak, 2017, Chapter 77, 978-3-319-60698-9, 799, 10.1007/978-3-319-60699-6_77
    14. Marzena Dołbniak, Andrzej Świerniak, Comparison of Simple Models of Periodic Protocols for Combined Anticancer Therapy, 2013, 2013, 1748-670X, 1, 10.1155/2013/567213
    15. Urszula Ledzewicz, Helmut Maurer, Heinz Schättler, Optimal Combined Radio- and Anti-Angiogenic Cancer Therapy, 2019, 180, 0022-3239, 321, 10.1007/s10957-018-1426-y
    16. Clara Rojas, Juan Belmonte-Beitia, Víctor M. Pérez-García, Helmut Maurer, Dynamics and optimal control of chemotherapy for low grade gliomas: Insights from a mathematical model, 2016, 21, 1531-3492, 1895, 10.3934/dcdsb.2016028
    17. T model of growth and its application in systems of tumor-immunedynamics, 2013, 10, 1551-0018, 925, 10.3934/mbe.2013.10.925
    18. Lance L Munn, Dynamics of tissue topology during cancer invasion and metastasis, 2013, 10, 1478-3967, 065003, 10.1088/1478-3975/10/6/065003
    19. Z. Foroozandeh, M. Shamsi, M. d. R. de Pinho, A mixed-binary non-linear programming approach for the numerical solution of a family of singular optimal control problems, 2019, 92, 0020-7179, 1551, 10.1080/00207179.2017.1399216
    20. Camille Pouchol, Jean Clairambault, Alexander Lorz, Emmanuel Trélat, Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy, 2018, 116, 00217824, 268, 10.1016/j.matpur.2017.10.007
    21. Valeriya Lykina, Sabine Pickenhain, Pontryagin Type Maximum Principle for budget-constrained infinite horizon optimal control problems with linear dynamics, 2018, 457, 0022247X, 1591, 10.1016/j.jmaa.2017.08.002
    22. U. Felgenhauer, Structural Stability Investigation of Bang-Singular-Bang Optimal Controls, 2012, 152, 0022-3239, 605, 10.1007/s10957-011-9925-0
    23. C. Yalçın Kaya, Helmut Maurer, A numerical method for nonconvex multi-objective optimal control problems, 2014, 57, 0926-6003, 685, 10.1007/s10589-013-9603-2
    24. Luis A. Fernández, Cecilia Pola, Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint, 2014, 19, 1553-524X, 1563, 10.3934/dcdsb.2014.19.1563
    25. Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo, Numerical solution for a problem arising in angiogenic signalling, 2019, 4, 2473-6988, 43, 10.3934/Math.2019.1.43
    26. Van M. Savage, Alexander B. Herman, Geoffrey B. West, Kevin Leu, Using fractal geometry and universal growth curves as diagnostics for comparing tumor vasculature and metabolic rate with healthy tissue and for predicting responses to drug therapies, 2013, 18, 1553-524X, 1077, 10.3934/dcdsb.2013.18.1077
    27. Aitziber Ibañez, Optimal control of the Lotka–Volterra system: turnpike property and numerical simulations, 2017, 11, 1751-3758, 25, 10.1080/17513758.2016.1226435
    28. X. Dupuis, L. Pujo-Menjouet, Optimal Control of Leukemic Cell Population Dynamics, 2014, 9, 0973-5348, 4, 10.1051/mmnp/20149102
    29. Urszula Ledzewicz, Heinz Schättler, On the Role of the Objective in the Optimization of Compartmental Models for Biomedical Therapies, 2020, 187, 0022-3239, 305, 10.1007/s10957-020-01754-2
    30. Dieter Grass, Valeriya Lykina, Infinite horizon cancer treatment model with isoperimetrical constraint: existence of optimal solutions and numerical analysis, 2019, 92, 0020-7179, 1401, 10.1080/00207179.2017.1396362
    31. Clara Rojas Rodríguez, Juan Belmonte-Beitia, Optimizing the delivery of combination therapy for tumors: A mathematical model, 2017, 10, 1793-5245, 1750039, 10.1142/S1793524517500395
    32. Clara Rojas Rodríguez, Gabriel Fernández Calvo, Ignacio Ramis-Conde, Juan Belmonte-Beitia, Stochastic modelling of slow-progressing tumors: Analysis and applications to the cell interplay and control of low grade gliomas, 2017, 49, 10075704, 63, 10.1016/j.cnsns.2017.02.008
    33. Clara Rojas, Juan Belmonte-Beitia, Optimal control problems for differential equations applied to tumor growth: state of the art, 2018, 3, 2444-8656, 375, 10.21042/AMNS.2018.2.00029
    34. Parametrization of the attainable set for a nonlinear control model of a biochemical process, 2013, 10, 1551-0018, 1067, 10.3934/mbe.2013.10.1067
    35. Alessandro Borri, Pasquale Palumbo, Federico Papa, Deterministic vs stochastic formulations and qualitative analysis of a recent tumour growth model, 2020, 53, 24058963, 16418, 10.1016/j.ifacol.2020.12.724
    36. Adam Glick, Antonio Mastroberardino, Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors, 2020, 0, 1553-524X, 0, 10.3934/dcdsb.2020343
    37. Filippo Cacace, Valerio Cusimano, Pasquale Palumbo, Optimal Impulsive Control With Application to Antiangiogenic Tumor Therapy, 2020, 28, 1063-6536, 106, 10.1109/TCST.2018.2861410
    38. Federico Papa, Alessandro Borri, Pasquale Palumbo, Tumour growth control: analysis of alternative approaches, 2023, 562, 00225193, 111420, 10.1016/j.jtbi.2023.111420
    39. Valeriya Lykina, Sabine Pickenhain, Katharina Kolo, Dieter Grass, Sustainability and long-term strategies in the modeling of biological processes, 2022, 55, 24058963, 665, 10.1016/j.ifacol.2022.09.172
    40. A. Camacho, E. Díaz-Ocampo, S. Jerez, Vitaly Volpert, Optimal control for a bone metastasis with radiotherapy model using a linear objective functional, 2022, 17, 0973-5348, 32, 10.1051/mmnp/2022038
    41. Poh Ling Tan, Helmut Maurer, Jeevan Kanesan, Joon Huang Chuah, Optimal Control of Cancer Chemotherapy with Delays and State Constraints, 2022, 194, 0022-3239, 749, 10.1007/s10957-022-02046-7
    42. Wenhui Luo, Xuewen Tan, Xiufen Zou, Qing Tan, Optimal Treatment of Prostate Cancer Based on State Constraint, 2023, 11, 2227-7390, 4025, 10.3390/math11194025
    43. Piernicola Bettiol, Richard Vinter, 2024, Chapter 1, 978-3-031-50088-6, 1, 10.1007/978-3-031-50089-3_1
    44. Pauline Mazel, Walid Djema, Frédéric Grognard, 2024, Optimal control for a combination of cancer therapies in a model of cell competition*, 979-8-3503-1633-9, 1351, 10.1109/CDC56724.2024.10886792
    45. Martin Dodek, Zuzana Vitková, Anton Vitko, Jarmila Pavlovičová, Eva Miklovičová, Personalization of Optimal Chemotherapy Dosing Based on Estimation of Uncertain Model Parameters Using Artificial Neural Network, 2025, 15, 2076-3417, 3145, 10.3390/app15063145
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3105) PDF downloads(503) Cited by(45)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog