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Abstract. We consider the problem of minimizing the tumor volume with a
priori given amounts of anti-angiogenic and cytotoxic agents. For one underly-
ing mathematical model, optimal and suboptimal solutions are given for four
versions of this problem: the case when only anti-angiogenic agents are admin-
istered, combination treatment with a cytotoxic agent, and when a standard
linear pharmacokinetic equation for the anti-angiogenic agent is added to each
of these models. It is shown that the solutions to the more complex models
naturally build upon the simplified versions. This gives credence to a model-
ing approach that starts with the analysis of simplified models and then adds
increasingly more complex and medically relevant features. Furthermore, for
each of the problem formulations considered here, there exist excellent simple
piecewise constant controls with a small number of switchings that virtually
replicate the optimal values for the objective.

1. Introduction. Tumor anti-angiogenesis is an indirect cancer treatment ap-
proach with the aim to limit the tumor’s growth, possibly even shrink the tumor,
by depriving it of the vasculature it needs for a steady supply with nutrients. It had
already been proposed by J. Folkman in the seventies [10], but was only enabled
with the discovery of inhibitory mechanisms of the tumor in the nineties [11, 15].
This treatment targets the endothelial cells that form the lining of the newly devel-
oping blood vessels and capillaries. These are healthy, genetically stable cell lines
and consequently no clonal resistance to angiogenic inhibitors has been observed in
experimental cancer [1, 16]. Hence this approach has the advantage of not being
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susceptible to developing drug resistance [17], all too often the limiting factor in
chemotherapy. But anti-angiogenic therapy only limits the tumor’s support mech-
anism and thus it seems clear, and any mathematical model and numerous medical
studies confirm this, that the tumor will grow back once treatment is halted. Thus
it is not efficient as a stand-alone or monotherapy treatment, but it needs to be
combined with other mechanisms like chemotherapy or radiotherapy [9] that kill
cancer cells.

Combinations of anti-angiogenic treatment with traditional chemotherapy simul-
taneously target two compartments, the cancer cells and the vascular cells that
support the tumor. Naturally, the question how these treatments should be sched-
uled arises. For example, chemotherapy needs the vascular system to deliver the
cytotoxic agents to the cancer cells while anti-angiogenic treatments precisely tar-
get this vasculature. So it might appear reasonable to apply chemotherapy first.
On the other hand, tumor angiogenesis is a pathological procedure. With an over-
expression of pro-angiogenic factors it creates an intricate, disorganized, and dys-
functional architecture which results in a vascular network with a high fractal di-
mension. When the tumor is in a stage of uncontrolled growth with the carrying
capacity significantly higher than the tumor volume, this vascular network consists
of many small capillaries that have a high permeability. As a result, during an all-
out attack with cytotoxic agents, much of the drug becomes wasted in this elaborate
labyrinth of small and leaky vessels and never reaches the primary tumor. Anti-
angiogenic agents naturally are most effective on these small and weak capillaries
and these are the first ones to be destroyed. Consequently, anti-angiogenic treat-
ments have the effect of normalizing the tumor vasculature [13, 14] and thus enable
a much more efficient drug delivery. In the medical literature the word “pruning”
has been used in connection with these normalizing capabilities of anti-angiogenic
agents. Hence, and there is mounting medical evidence to support this approach, it
may be better to start with anti-angiogenic treatment. But these are difficult ques-
tions that are far from being answered and the search for an optimal “therapeutic
window” when chemotherapy is best applied in relation to anti-angiogenic therapy
is of great interest and is currently pursued in medical trials.

In this paper, we consider a mathematical model for tumor anti-angiogenesis
by Ergun, Camphausen and Wein that has previously been analyzed in combina-
tion treatments with radiotherapy [9]. It is a modification of a biologically val-
idated model by Hahnfeldt, Panigrahy, Folkman and Hlatky [12] who derived a
minimally parameterized population based model for tumor growth under anti-
angiogenic treatment with the primary tumor volume, p, and the carrying capacity
of its vasculature, q, as the main variables. The model by Hahnfeldt et al. has been
analyzed extensively by d’Onofrio and Gandolfi in [6] and has undergone various
modifications and generalizations (e.g., see [5, 7]) including the one considered here.
(For modeling related aspects, see the paper [30] in this volume.) For the model
by Ergun et al., in earlier research [24, 20], we have given a complete mathematical
solution to the monotherapy problem of scheduling an a priori given amount of
anti-angiogenic agents in order to maximize the tumor reduction achievable. This
is the problem formulation as it was initially posed in [9]; other, related optimal
control formulations have been considered by Swierniak (e.g., [31, 32]). In [19] we
have shown that the monotherapy solution indeed becomes a basis upon which the
optimal solution for a combination with chemotherapy can be built. More specifi-
cally, the same structure of optimal combination therapy solutions is valid as it was
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verified numerically for a wide range of initial conditions in [8] for the model by
Hahnfeldt et al. [12]: optimal controls for the anti-angiogenic agent follow the opti-
mal angio-monotherapy and then, at a specific time, chemotherapy becomes active
and is given in one full dose session.

In all these papers, the simplifying assumption is made to identify the drug
dosage with its concentrations. While chemotherapy is administered in the opti-
mal solution in a single maximum dose segment (bang-bang control), the optimal
administration of the anti-angiogenic agent follows a time-varying feedback control
that depends on the states p and q (singular control). It follows similarly to some of
our earlier results for compartmental models for chemotherapy [23], that optimality
of bang-bang controls is not affected if a standard linear pharmacokinetic equation
is added to the model. But this is different if optimal controls are singular. In
this case, the so-called order of the singular arc increases [28] causing qualitative
changes. However, as feedback functions that depend on q, singular controls are not
really practical for this problem to begin with and the real question is the following
one: what are the effects that the addition of pharmacokinetic equations has on prac-
tically realizable and good suboptimal treatment protocols? In this paper, for a fixed
set of initial conditions, we give and compare the optimal solutions for four versions
of the underlying optimal control problem. We first present the optimal solutions
for both the mono- and combination therapy models when drug dosages and their
concentrations are identified and then add a standard linear pharmacokinetic equa-
tion to model the concentration of the anti-angiogenic agent. Since chemotherapy
is given in one full dose session, in order to keep the model simpler, we did not
add a second equation for the cytotoxic agent. In fact, this does not significantly
change the structure of solutions and here a simplified model that reasonably well
reflects the optimal solution is preferred. It will be shown that while the structure
of optimal controls becomes quite a bit more complex with this addition, there exist
simple realizable suboptimal protocols that provide excellent approximations to the
optimal values.

2. Optimal control for a mathematical model for combination therapy.
We formulate a mathematical model for combination of tumor anti-angiogenesis
with chemotherapy that is based on a model by Ergun, Camphausen and Wein in
[9]. This model itself is a modification of a biologically validated model by Hahnfeldt
et al. from [12] in which the spatial aspects of the underlying consumption-diffusion
processes that stimulate and inhibit angiogenesis are incorporated into a non-spatial
2-compartment model with the primary tumor volume p and its carrying capacity
q as variables. Tumor growth is modeled by a Gompertzian growth function,

ṗ = −ξp ln

(

p

q

)

, (1)

where ξ denotes a tumor growth parameter. The dynamics proposed in [9] for the
equation modeling the change in the carrying capacity is given by

q̇ = bq
2

3 − dq
4

3 − µq, (2)

where b (birth) and d (death), respectively, are endogeneous stimulation and inhi-
bition parameters for the endothelial support and the term µq represents natural

death terms. The inhibition and stimulation terms, I(q) = dq
4

3 and S(q) = bq
2

3 , are

a modification of the corresponding terms, I(p, q) = dp
2

3 q and S(p) = bp, chosen
in [12]. The main reason for this modification lies in a differential-algebraic nature
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of the original model with a fast q-dynamics that reaches its steady-state quickly.
In (2) this dynamics is slowed down by choosing the inhibitory effect of the tumor
proportional to the tumor radius and not its surface area as it is done in [12]. Then
still replacing p with q in steady state, this results in a significant mathematical
simplification of the q-dynamics since the tumor volume p is eliminated from this
equation. (For a more detailed description of the underlying modeling, also see the
paper [30] in this volume).

In combination treatments with chemotherapy two controls u and v are in-
troduced that represent anti-angiogenic and cytotoxic agents, respectively. Anti-
angiogenic agents typically are biological agents that need to be grown in a lab and
still are very expensive and limited. Chemotherapeutic agents, on the other hand,
are widely available, but have serious side-effects and thus can only be administered
in limited quantities. From a practical point of view it is therefore of importance
how given amounts of these agents can be administered to have an “optimal” ef-
fect. Mathematically, this can be formulated as an optimal control problem with
free terminal time T and isoperimetric constraints that limit the quantities of the
agents to be given,

∫ T

0

u(t)dt ≤ A and

∫ T

0

v(t)dt ≤ B.

Adding extra variables y and z that monitor the total amounts of agents that
have already been administered, and relabeling the total amounts as ymax and zmax

accordingly, mathematically this problem takes the following form:

[C]: for a free terminal time T , minimize the objective J(u) = p(T ) subject to
the dynamics

ṗ = −ξp ln

(

p

q

)

− ϕpv, p(0) = p0, (3)

q̇ = bq
2

3 − dq
4

3 − µq − γqu− ηqv, q(0) = q0, (4)

ẏ = u, y(0) = 0, (5)

ż = v, z(0) = 0, (6)

over all Lebesgue measurable functions u : [0, T ] → [0, umax] and v : [0, T ] →
[0, vmax] for which the corresponding trajectory satisfies the end-point con-
straints y(T ) ≤ A = ymax and z(T ) ≤ B = zmax.

The coefficients ϕ, γ and η are non-negative constants that relate the dosages of
the respective agents to their effectiveness. The constants umax and vmax denote the
maximum doses of the anti-angiogenic and cytotoxic agents, respectively, with the
total available amounts of each agent denoted by ymax and zmax. If we formally set
zmax = 0, i.e., no cytotoxic drugs are available, then we obtain the corresponding
anti-angiogenic monotherapy problem and we denote this problem by [M].

Throughout this paper, we shall use the following parameter values in our numer-
ical computations: The variables p and q are volumes measured in mm3; ξ = 0.084
per day, b = 5.85 per day, d = 0.00873 per mm2 per day, These numerical values
are based on the data given in [12]. For illustrative purposes we also chose a small
positive value for µ, µ = 0.02 per day. In the formulation [C] dosage and concentra-
tion of the agents are identified and we give u and v the meaning of dosages with
units of mg of dose per kg per day; the total amounts ymax and zmax thus are in
mg of dose per kg. The conversion factor γ in (4) is taken as γ = 0.15 with units
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of kg per mg of dose. The maximum dosage for the anti-angiogenic agent is taken
to be umax = 15 and we limit the total amount to be ymax = 45. These values are
chosen for illustrative purposes and are not based on biological data. Regarding
the cytotoxic agent we take ϕ = 0.1 kg per mg of dose and we give results for both
η = 0 and small positive values for η. For biological reasons the relative effects of
the cytotoxic agent on the vasculature should be smaller than on the cancer cells,
η ≤ ϕ, and in our computations we only observed the expected quantitative changes.
Hence we mostly report numerical results for η = 0. The control limits taken are
vmax = 20 and zmax = 100. We emphasize that our theoretical results about the
structure of optimal controls are independent of these parameter values and that
they are generally valid. Also, in all our figures we consistently plot p vertically
and q horizontally since this better visualizes tumor reductions, the objective in the
optimal control problem [C].

Naturally, in this formulation all states need to be non-negative, but this need
not be added as an extra constraint. It is not difficult to show that if p0 and q0 are
arbitrary positive initial conditions, then for any admissible controls u and v, the so-
lution (p, q, y, z) to the corresponding differential equation exists for all times t > 0
and both p and q remain positive (e.g., [20, 19]). It follows from standard results of
optimal control (see, e.g., [3]) that optimal controls for problem [C] exist. But de-
generate cases are possible. The reason lies in the fact that, no matter what control

is being used, the cancer volume p increases for p < q exp
(

−ϕ
ξ
vmax

)

. Consequently,

if the initial condition lies in this region, and if the overall amounts ymax and zmax

simply are too small for the system to reach the region p > q exp
(

−ϕ
ξ
vmax

)

, then

indeed the smallest value for p along any solution is given by the initial condition
p0. Mathematically, in such a case the “optimal” solution simply becomes to do
“nothing”, i.e., T = 0. Other, less degenerate situations are possible as well in which
for similar reasons not all available agents are fully used up. It is not too difficult to
analyze the dynamics for the system in these cases as well, but their analysis brings
the need to distinguish various subcases. Also, from a practical point of view, these
initial data (p0, q0) and (ymax, zmax) are medically not very realistic. For this reason
we make the following definition and henceforth consider an initial condition that
is well-posed in this sense.

Definition 2.1. We say the initial data (p0, q0) and (ymax, zmax) are well-posed for
problem [C] if the optimal final time T is positive and if all anti-angiogenic and
cytotoxic agents have been used up, y(T ) = ymax and z(T ) = zmax.

A complete solution to the monotherapy problem [M] (i.e., for zmax = 0) was
given in [20]. Optimal controls u∗ are specific concatenations of the constant controls
u = umax (full dose treatment) and u = 0 (no anti-angiogenic agents are being
administered) and a specific, time-varying feedback control usin, a so-called singular
control. This control can be calculated explicitly and is given in the Proposition
below:

Proposition 1. [20] If the optimal control u∗ is singular on an open interval I,
u∗(t) = usin(t), then

usin(t) =
1

γ
Ψ
(

3

√

q∗(t)
)

(7)
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where with w = 3
√
q we have that

Ψ(w) =

(

b− dw2

w
+ 3ξ

b+ dw2

b− dw2
− µ

)

. (8)

This control is only optimal along one specific curve in (p, q)-space, the correspond-
ing singular arc S, which is the graph of a smooth function psin of p given by

psin(q) = q exp

(

3
b− dq

2

3 − µq
1

3

b+ dq
2

3

)

. (9)

The singular control usin makes this curve invariant. Admissible controls need to
satisfy the control constraint 0 ≤ u ≤ umax and this restricts the admissible portion
of the singular arc to an interval [q∗` , q

∗

u] with the values q∗` and q∗u the unique

solutions to the equation Ψ( 3
√
q) = γumax in (0,

√

(

b
d

)3
). Note that usin(t) is a

smooth feedback control that only depends on 3

√

q∗(t). �
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Figure 1. Optimal synthesis for the model [M]

For a typical well-posed initial condition (p0, q0) with p0 ≤ q0 (i.e., the tumor is
growing), optimal monotherapy controls start with an initial segment along which
anti-angiogenic agents are given at the maximum dose umax until the singular arc
S is reached. At this point optimal controls switch to the singular control usin and
the corresponding optimal trajectory now descends along the singular arc until all
anti-angiogenic agents are exhausted. It is here where most of the tumor shrinkage
occurs. When the inhibitors have been exhausted, active therapy is over. However,
even as no more agents are given, i.e., along a trajectory for the control u = 0,
there still is an additional tumor reduction. The reason for this lies in the fact that
inhibitors run out in the region p > q where the tumor volume still shrinks, even for
u = 0. Hence, because of after effects, the minimum tumor volume is only realized
when the trajectory corresponding to u = 0 crosses the diagonal p = q. The
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corresponding time T then is the limit of the horizon considered in the problem
formulation [M]. Depending on the actual initial condition (p0, q0) and the available
amount ymax of anti-angiogenic agents, there exist changes in this structure, most
notably if the singular control saturates (i.e., reaches its upper limit umax) before
all inhibitors have been used up. But here we concentrate on this most common
scenario and refer the reader to [25] for a detailed discussion of other aspects of the
structure of optimal controls.

Fig. 1 shows the synthesis of optimal controlled trajectories for the monother-
apy problem [M]. Such a synthesis provides a road map of all optimal trajectories
depending on their initial conditions. The center piece is the singular arc S shown
as a solid blue curve in the figure. The trajectories corresponding to the constant
controls u = 0 (dash-dotted green curves) and u = umax (solid green curves) give
the response of the system to these controls and the dotted line marks the diago-
nal p = q where the maximum tumor reduction is realized. In the diagram several
optimal trajectories are indicated and the thick curves in the graph mark one partic-
ular such trajectory that follows the concatenation structure umax/usin/0 described
above.

Fig. 2 gives the optimal control and its corresponding trajectory for the initial
conditions p0 = 8, 000 [mm3] and q0 = 10, 000 [mm3]. In this case, the optimal
concatenation sequence is umax/usin/0: the optimal control is given at full dosage
u = umax = 15 until the singular curve S is reached at time t1 = 1.341 days. The
administration then follows the time-varying singular control for t2 = 3.722 days
until all anti-angiogenic agents are exhausted after 5.063 days. Due to after effects
the maximum tumor reduction is realized along a trajectory for control u = 0 at
the optimal terminal time T = 9.378 days when the trajectory reaches the diagonal
p = q,

u∗(t) =







umax for 0 ≤ t < 1.341
usin for 1.341 ≤ t < 5.063
0 for 5.063 ≤ t < 9.378

. (10)

The theoretically optimal minimum value for these data is given by p[M ] = 2242.65.
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Figure 2. Optimal control (a, left) and corresponding trajec-
tory (b, right) for the monotherapy problem [M] with initial data
(p0, q0) = (8, 000mm3; 10, 000mm3)

Once chemotherapy is added to the model, this solution to the monotherapy
problem actually becomes the basis on which the optimal combination therapy
controls are built. Such a property is not generally valid for multi-control problems,
but it holds here because of certain relations between higher-order Lie brackets of
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the drift and control vector fields defining the dynamics (3) and (4). We have the
following characterization of the singular control for the anti-angiogenic agent in
the presence of chemotherapy.

Proposition 2. [19] If the optimal anti-angiogenic agent u∗ is singular on an open
interval I, u∗(t) = usin(t), and the optimal cytotoxic agent is given by v∗(t) on I,
then

γusin(t) + ηv∗(t) = Ψ
(

3

√

q∗(t)
)

(11)

with Ψ the same function as given above, (8). Furthermore, on the interval I the
control v∗ is bang-bang with at most one switching from v = 0 to v = vmax. For
v∗ ≡ 0 the corresponding trajectory must follow the singular arc S of the mono-
therapy solution; the trajectory is not constrained for v∗ ≡ vmax. �

For combination treatments, however, the theoretical analysis of optimal con-
catenations is more complex and it has not been completed so far. For example,
it has not yet been excluded theoretically that the chemotherapeutic agent v could
follow a singular regimen. From a biological perspective such a protocol is not wel-
come since low dosages are known to foster developing drug resistance. In fact, for
various mathematical models for cell-cycle specific chemotherapy [21, 22, 33], we
have proven that optimal controls are bang-bang. Also, for the model [C] consid-
ered here this structure has been supported in many numerical computations. In
fact, we have always seen as optimal the following structure: optimal controls for
the anti-angiogenic agent u follow the optimal angio-monotherapy and at a specific
time τ chemotherapy becomes active and all available cytotoxic agents u are given
in one full dose session. For the same initial conditions given above, p0 = 8, 000
[mm3] and q0 = 10, 000 [mm3], and small values of η the optimal controls are of
the following form

(u∗(t), v∗(t)) =















(umax, 0) for 0 ≤ t < t1
(usin(t), 0) for t1 ≤ t < t2

(usin(t), vmax) for t2 ≤ t < t3
(0, vmax) for t3 ≤ t < T

. (12)

Table 1 summarizes some of our numerical results for various values of η. For η =
0 the switching times for the optimal control u∗ are the same as in the monotherapy
case: the control switches from full dose to singular at time t1 = 1.341 as the singular
arc is reached and all anti-angiogenic inhibitors are exhausted at time t3 = 5.063.
Chemotherapy commences earlier at time t2 = 4.378, but since η = 0 this does not
effect the time when anti-angiogenic agents will be exhausted. However, different
from the monotherapy case, the minimum tumor reduction no longer is achieved as
the trajectory crosses the diagonal. Now we have q(T ) = 2242.65 and the minimum
tumor volume is given by p[C,η=0] = 991.14. The reason for this change lies in the
fact that the cytotoxic agent gives tumor reductions also in the region p < q which is
not possible for monotherapy only. The final value for q(T ) is identical with the final
value for the monotherapy problem if η = 0. For positive values of η this naturally
no longer is true and the quantitative changes in the optimal values depend on the
effectiveness. But overall the structure of the controls does not change. Figs. 3 and
4 show the optimal controls and their corresponding trajectories for η = 0.01 and
η = 0.02. Note the drop in the dosage of the anti-angiogenic agent u that occurs
as the chemotherapy becomes active. It is caused by the presence of the positive η-
term in (11) which adjusts the overall effectiveness of the combined anti-angiogenic
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η t1 t2 t3 T p(T )
0 1.341 4.378 5.063 9.378 991.14

0.01 1.341 4.604 5.159 9.605 875.15
0.02 1.341 4.830 5.186 9.830 774.78

Table 1. Optimal switching times for problem [C] for various val-
ues of η

and cytotoxic effects on the vasculature (see (4)) to follow the optimal relation Ψ
as described in Proposition 2.
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Figure 3. Optimal controls (left) and corresponding trajectory
(right) for the combination therapy model [C] with initial data
(p0, q0) = (8, 000mm3; 10, 000mm3) and η = 0.01. The dosages of
the anti-angiogenic and cytotoxic agents are shown on the left in
red and blue, respectively.
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Figure 4. Optimal controls (left) and corresponding trajectory
(right) for the combination therapy model [C] with initial data
(p0, q0) = (8, 000mm3; 10, 000mm3) and η = 0.02. The dosages of
the anti-angiogenic and cytotoxic agents are shown on the left in
red and blue, respectively.

3. Mono- and combination therapies with a linear pharmacokinetic
model. A commonly made simplification in mathematical models for cancer treat-
ments identifies the agents’ dosage with their concentrations and effects. In reality
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these clearly are different and their relations are studied under the names of phar-
macokinetics (PK) and pharmacodynamics (PD). Pharmacokinetic equations model
the drugs’ concentrations and pharmacodynamics models their effectiveness. The
full process is known as drug delivery in the medical literature. The standard and
most commonly used model for PK in the pharmaceutical industry is a simple
model of exponential growth and decay given by

ċ = −kc+ u, c(0) = 0, (13)

where u denotes the dosage of the agent and c its concentration. The coefficient k
is the clearance rate and is related to the half-life of the agents. In this section we
show how the optimal controls given above change when this linear pharmacokinetic
equation is added to the model. For our numerical computations we take η = 0 in
this section.

Clearly, there will be quantitative differences. Equation (13) slows down the
clearance of the drug and consequently the anti-angiogenic agent will remain effec-
tive over a longer time period and thus give lower minimum tumor volumes. But
does this change effect the structure of optimal protocols qualitatively? If it doesn’t,
then simple extensions of our previous results will accommodate this change. If it
does, the analysis needs to be modified and possibly done anew. In mathemati-
cal models for chemotherapy that we had considered earlier this was not the case
[23, 26]. The reason was that optimal controls were bang-bang and this structure
is preserved when a linear pharmacokinetic equation (13) is added to the model.
But optimal solutions for the anti-angiogenic agent are given by singular controls
and here this is no longer true. In [28] we have shown that while optimality prop-
erties of singular arcs are preserved, its so-called intrinsic order increases from 1
to 2. It is well-known in the control literature [2, 34] that an optimal smooth sin-
gular control with values in the interior of the control set cannot be concatenated
optimally with either of the constant bang controls u = 0 or u = umax. These
concatenations are now accomplished by means of chattering arcs, trajectories that
correspond to controls that switch infinitely many times between their upper and
lower values on a finite interval. This fact is known as the Fuller phenomenon in
the optimal control literature. While such a structure may appear odd, it actually
is not (the simplest example is a bouncing ball without friction) and it is generic in
high dimension [18]. Thus it needs to be expected and be dealt with. We therefore
add the standard linear pharmacokinetic model (13) for the anti-angiogenic agent
to the mathematical model and, as a simple model for PD, replace the control u
in (4) by its concentration c, but otherwise preserve the same formulation. We do
not incorporate a second equation for the cytotoxic agent here since we want to
demonstrate the effects on one control and it is the anti-angiogenic agent that leads
to more interesting phenomena. We thus now consider the following modification
of problem [C]:

[CwPK]: for a free final time T , minimize p(T ) subject to

ṗ = −ξp ln

(

p

q

)

− ϕpv, p(0) = p0, (14)

q̇ = bq
2

3 − dq
4

3 − µq − γqc− ηqv, q(0) = q0, (15)
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ċ = −kc+ u, c(0) = 0, (16)

ẏ = u, y(0) = 0, (17)

ż = v, z(0) = 0, (18)

over all Lebesgue measurable functions u : [0, T ] → [0, umax] and v : [0, T ] →
[0, vmax] for which the corresponding trajectory satisfies the end-point con-
straints y(T ) ≤ ymax and z(T ) ≤ zmax.

In this formulation, as before, u and v are dosages measured in mg of dose per
kg per day, but now the conversion factor γ in (15) relates the concentration c to
the carrying capacity and thus is in units of kg per mg of dose per day.

It is shown in [28] that the optimality status of the singular arc is preserved
under the addition of such a linear pharmacokinetic model. In fact, the equations
that define the singular control and arc in the monotherapy model [M] remain valid,
only with a different interpretation. The singular curve S defined by (9) is preserved

as a vertical surface Ŝ in (p, q, c)-space and the singular arc for the monotherapy
problem [MwPK] (i.e., zmax = 0) is now given by the intersection of this cylindrical

surface Ŝ with the graph of the function c = 1
γ
Ψ
(

3
√
q
)

defined by (8), see Fig. 5.
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Figure 5. Vertical singular surface Ŝ in (p, q, c)-space and graph
of the concentration c = 1
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But concatenations with the singular arc are now no longer accomplished by
means of the constant controls u = 0 or u = umax, but through chattering con-
trols that switch infinitely often between these values. Fig. 6 gives the graphs of a
numerically computed optimal control u for this model and the corresponding con-
centration c. Again, the same initial conditions p0 = 8, 000 [mm3] and q0 = 10, 000
[mm3] were used and in the numerical computations we have taken a value for the
half-life k that is supported by experiments with angiostatin, k = 0.39 per day, [12].
The optimal control package NUDOCCCS due to Büskens [4] was used to compute
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a solution of the discretized control problem using nonlinear programming methods
with 400 grid points and a seventh order Runge-Kutta integration method. Fig.
6 shows the resulting control and the corresponding concentration. The irregular
structure of the numerically computed control on the left is caused by the fact that
the theoretically optimal control chatters and has a singular middle segment. As the
intervals between the switchings shrink to 0, the numerical values for the controls
no longer alternate between their upper and lower values, but already try to connect
with the singular control values that lie in the interior of the control interval. The
corresponding value of the objective is within the desired stopping criterion for the
algorithm. Now the final time is T = 15.548 [days ] and the minimum tumor volume
is given by p[M,pk] = 564.762 [mm3]. An interesting observation is that this value is
significantly smaller than for the model without a pharmacokinetic equation. The
reason is that with a clearance rate k the concentration remains high for a much
longer time than in the original modeling - we now have T = 15.548 [days ] versus
T = 9.378 [days ] in the model [M] - and the cumulative effects on the carrying
capacity q are significant. In some sense, the original modeling is that of a fast
acting agent that quickly gets cleared. This model clearly favors slow acting agents
that have a low clearance rate.
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Figure 6. A numerically computed ‘optimal’ chattering control u
(left) with corresponding concentration c (right) for problem
[MwPK]
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Figure 7. A suboptimal bang-bang control with five arcs (left)
and corresponding concentration c (right) for problem [MwPK]

Obviously, chattering controls are not of practical interest and the relevant ques-
tion is what are the effects on the value of the objective. Do there exist good
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and simple, practically realizable suboptimal protocols? As for the original model
[M], this is indeed the case. Fig. 7 gives an example of a suboptimal control that
was computed taking the following simple piecewise constant approximation for the
optimal control:

ũ(t) =























umax for 0 ≤ t < t1
0 for t1 ≤ t < t2
ū for t2 ≤ t < t3

umax for t3 ≤ t < t4
0 for t4 ≤ t ≤ T

. (19)

Here both chattering arcs at the beginning and end of the singular arc are approx-
imated by the trajectory of a simple bang-bang control that switches once from
umax to 0 and the singular control is approximated by a constant control ū. This
particular choice is probably the simplest reasonable approximation to the control
structure that the theory predicts as optimal: a chattering control followed by a sin-
gular control and one more chattering control. The switching times ti, i = 1, . . . , 4,
the final time T , and the value ū of the control are free optimization variables. Using
the arc-parametrization method developed in [29] and the code NUDOCCCS [4], we
obtain the optimal switching times t1 = 1.210, t2 = 3.649, t3 = 8.294, t4 = 9.022,
the final time T = 15.544 and the constant control ū is given by ū = 3.725. This
gives a minimal tumor volume of p̃[M,pk] = 564.763 that is virtually identical with
the optimal minimal tumor volume p[M,pk] = 564.762 for the “chattering control”
in Fig. 6. The numerical computations also show that second order sufficient condi-
tions for the underlying optimization problem are satisfied and hence this control is
a strict (local) minimum. Fig. 7 shows the best suboptimal control on the left and
the corresponding concentration on the right. Overall, the behavior is very similar
as in case of the chattering control, but the system has a much smoother and thus
for many aspects preferable response. Since the final time T is much longer, even
better approximations are realized in this case than in the monotherapy model [M].
The trajectories for the optimal and sub-optimal controls are indistinguishable.
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Figure 8. A numerically computed ‘optimal’ chattering control
u (dosages of the anti-angiogenic agent, shown in red on the left)
and its corresponding concentration c (on the right) for problem
[CwPK]; the control v, the dosage of the cytotoxic agent, is included
in blue on the left.

Similar results are valid for the problem [CwPK] with chemotherapy. The struc-
ture for the anti-angiogenic inhibitor is the same as for the monotherapy problem
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Figure 9. A suboptimal bang-bang control u (dosages of the anti-
angiogenic agent, shown in red on the left) and its corresponding
concentration c (on the right) for problem [CwPK]; the control v,
the dosage of the cytotoxic agent, is included in blue on the left.

with the irregular pattern in the numerically computed control much more pro-
nounced. For these data, chemotherapy only becomes active after all inhibitors
have been used up. The reason for this is that the PK slows down the clearance of
the anti-angiogenic agent to such an extent that the final time T is more than 5 days
after all anti-angiogenic inhibitors have been given. Since no PK was included for
the chemotherapeutic agent, the time period when it is given at maximum dose, 5
days in this case, is unchanged. Optimization clearly favors to put the chemotherapy
last. The final time T = 15.540 is almost identical with the one for the monotherapy
problem and the minimum tumor volume is given by p[C,pk] = 249.598. As before,
the value of the carrying capacity at the final time, q(T ) = 564.528, is almost iden-
tical with the optimal value in the monotherapy problem. In the suboptimal ap-
proximation there obviously is no need to approximate the control v that is already
bang-bang. Choosing the same structure (19) as before, we now obtain the optimal
switching times for the anti-angiogenic agent u as t1 = 1.180, t2 = 3.590, t3 = 8.286
and t4 = 8.940. The cytotoxic agent becomes activated at time τ = 10.545 and
the final time is given by T = 15.545. The constant approximation for the singular
control is, as in the monotherapy problem, ū = 3.725, and the minimum tumor
volume is p̃[C,sub] = 249.598, once again identical with the optimal value.

4. Conclusion. In this paper, for four related mathematical models, we have given
optimal solutions for the problem of minimizing the tumor volume with a priori
given amounts of anti-angiogenic and cytotoxic agents. For the monotherapy prob-
lem [M] this solution is based on a complete analytical solution given earlier [20], for
the other versions we presented numerically optimal solutions whose structures are
in agreement with existing partial theoretical results. Clearly, the results that we
presented are for one set of parameters and initial conditions. But we have seen the
same structures of the optimal controls when parameters and initial conditions were
varied (extreme variations, however, were not considered). For example, in accor-
dance with existing cost limitations the numerical values used here somewhat make
the anti-angiogenic agent the limiting quantity, but the structure of the solutions
does not change if the total amount ymax is increased. Also based on theoretical
analysis, there are three important conclusions that come out of our research:

(1) Optimal protocols for the combination therapy models can be built upon the
structure of the optimal monotherapy solutions when only anti-angiogenic agents
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are given. This is not generally true, in fact, quite rare, for arbitrary multi-input
nonlinear control systems. It significantly aids in the solution of the combination
therapy problem since it allows for an inductive solution procedure.

(2) The addition of a linear pharmacokinetic model changes the qualitative struc-
ture of the optimal control u for the anti-angiogenic agent, but only as far as the
concatenations with the optimal singular control are concerned. These are now ac-
complished by means of chattering arcs. As our numerical results show, however,
quantitative differences can be substantial.

(3) Although the mathematically optimal solutions are not practical, they provide
guidelines on how to find simple, piecewise constant, sub-optimal controls with a
very small number of segments that approximate the optimal values arbitrarily
closely. These sub-optimal protocols generally can easily be computed as solution
to some low-dimensional optimization problem. But it is only the fact that the
optimal solution is known that allows to judge their effectiveness.

All our conclusions support a mathematical modeling approach that starts with
the analysis of simplified models and then adds increasingly more complex and med-
ically relevant features. If it is possible to build up the solutions step by step - this
is the case with the model considered here, but also holds for other mathematical
models for tumor anti-angiogenesis - then this approach has the advantage that
it clearly brings out the importance of the individual portions (e.g., chemother-
apy versus anti-angiogenic treatments). This also is one of the advantages of low-
dimensional, minimally parameterized models. Large and complex models that try
to fully and accurately reflect the underlying biology necessarily need to rely on
simulations and thus only have a limited or local scope. Low-dimensional aggregate
models make mathematical analysis possible that can give give more global insights
into the underlying mechanisms. For example, the proposed suboptimal protocols
are simple and thus realizable. They suggest that few properly timed and chosen
constant dosages are an effective means of administering the agents. Naturally, any
clinical implementation would be strongly dependent on the accuracy or correctness
of the underlying model, but nevertheless our results provide a clear guidance as to
what to look for.
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