An SEIR epidemic model with constant latency time and infectious period

  • Received: 01 September 2010 Accepted: 29 June 2018 Published: 01 August 2011
  • MSC : Primary: 34K19, 34K20, 92D30.

  • We present a two delays SEIR epidemic model with a saturation incidence rate. One delay is the time taken by the infected individuals to become infectious (i.e. capable to infect a susceptible individual), the second delay is the time taken by an infectious individual to be removed from the infection. By iterative schemes and the comparison principle, we provide global attractivity results for both the equilibria, i.e. the disease-free equilibrium $\mathbf{E}_{0}$ and the positive equilibrium $\mathbf{E}_{+}$, which exists iff the basic reproduction number $\mathcal{R}_{0}$ is larger than one. If $\mathcal{R}_{0}>1$ we also provide a permanence result for the model solutions. Finally we prove that the two delays are harmless in the sense that, by the analysis of the characteristic equations, which result to be polynomial trascendental equations with polynomial coefficients dependent upon both delays, we confirm all the standard properties of an epidemic model: $\mathbf{E}_{0}$ is locally asymptotically stable for $\mathcal{R}% _{0}<1$ and unstable for $\mathcal{R}_{0}>1$, while if $\mathcal{R}_{0}>1$ then $\mathbf{E}_{+}$ is always asymptotically stable.

    Citation: Edoardo Beretta, Dimitri Breda. An SEIR epidemic model with constant latency time and infectious period[J]. Mathematical Biosciences and Engineering, 2011, 8(4): 931-952. doi: 10.3934/mbe.2011.8.931

    Related Papers:

    [1] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [2] Bruno Buonomo, Marianna Cerasuolo . The effect of time delay in plant--pathogen interactions with host demography. Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473
    [3] Jinliang Wang, Hongying Shu . Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences and Engineering, 2016, 13(1): 209-225. doi: 10.3934/mbe.2016.13.209
    [4] Hongjing Shi, Wanbiao Ma . An improved model of t cell development in the thymus and its stability analysis. Mathematical Biosciences and Engineering, 2006, 3(1): 237-248. doi: 10.3934/mbe.2006.3.237
    [5] Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785
    [6] Dongxue Yan, Xingfu Zou . Dynamics of an epidemic model with relapse over a two-patch environment. Mathematical Biosciences and Engineering, 2020, 17(5): 6098-6127. doi: 10.3934/mbe.2020324
    [7] Masaki Sekiguchi, Emiko Ishiwata, Yukihiko Nakata . Dynamics of an ultra-discrete SIR epidemic model with time delay. Mathematical Biosciences and Engineering, 2018, 15(3): 653-666. doi: 10.3934/mbe.2018029
    [8] Masoud Saade, Samiran Ghosh, Malay Banerjee, Vitaly Volpert . An epidemic model with time delays determined by the infectivity and disease durations. Mathematical Biosciences and Engineering, 2023, 20(7): 12864-12888. doi: 10.3934/mbe.2023574
    [9] Yifan Xing, Hong-Xu Li . Almost periodic solutions for a SVIR epidemic model with relapse. Mathematical Biosciences and Engineering, 2021, 18(6): 7191-7217. doi: 10.3934/mbe.2021356
    [10] Dongmei Li, Bing Chai, Weihua Liu, Panpan Wen, Ruixue Zhang . Qualitative analysis of a class of SISM epidemic model influenced by media publicity. Mathematical Biosciences and Engineering, 2020, 17(5): 5727-5751. doi: 10.3934/mbe.2020308
  • We present a two delays SEIR epidemic model with a saturation incidence rate. One delay is the time taken by the infected individuals to become infectious (i.e. capable to infect a susceptible individual), the second delay is the time taken by an infectious individual to be removed from the infection. By iterative schemes and the comparison principle, we provide global attractivity results for both the equilibria, i.e. the disease-free equilibrium $\mathbf{E}_{0}$ and the positive equilibrium $\mathbf{E}_{+}$, which exists iff the basic reproduction number $\mathcal{R}_{0}$ is larger than one. If $\mathcal{R}_{0}>1$ we also provide a permanence result for the model solutions. Finally we prove that the two delays are harmless in the sense that, by the analysis of the characteristic equations, which result to be polynomial trascendental equations with polynomial coefficients dependent upon both delays, we confirm all the standard properties of an epidemic model: $\mathbf{E}_{0}$ is locally asymptotically stable for $\mathcal{R}% _{0}<1$ and unstable for $\mathcal{R}_{0}>1$, while if $\mathcal{R}_{0}>1$ then $\mathbf{E}_{+}$ is always asymptotically stable.


  • This article has been cited by:

    1. Anthony M. Pasion, Juancho A. Collera, 2019, 2184, 0094-243X, 060013, 10.1063/1.5136445
    2. Mohammad A. Safi, Salisu M. Garba, Global Stability Analysis of SEIR Model with Holling Type II Incidence Function, 2012, 2012, 1748-670X, 1, 10.1155/2012/826052
    3. Isam Al-Darabsah, Yuan Yuan, A Stage-Structured Mathematical Model for Fish Stock with Harvesting, 2018, 78, 0036-1399, 145, 10.1137/16M1097092
    4. Isaac Mwangi Wangari, Lewi Stone, Nakul Chitnis, Backward bifurcation and hysteresis in models of recurrent tuberculosis, 2018, 13, 1932-6203, e0194256, 10.1371/journal.pone.0194256
    5. Abderrazak Nabti, Behzad Ghanbari, Global stability analysis of a fractional SVEIR epidemic model, 2021, 0170-4214, 10.1002/mma.7285
    6. Yoshiaki Muroya, Yoichi Enatsu, Huaixing Li, A note on the global stability of an SEIR epidemic model with constant latency time and infectious period, 2013, 18, 1553-524X, 173, 10.3934/dcdsb.2013.18.173
    7. D. Breda, O. Diekmann, W. F. de Graaf, A. Pugliese, R. Vermiglio, On the formulation of epidemic models (an appraisal of Kermack and McKendrick), 2012, 6, 1751-3758, 103, 10.1080/17513758.2012.716454
    8. Anjana Das, M. Pal, Modeling and Analysis of an Imprecise Epidemic System with Optimal Treatment and Vaccination Control, 2018, 13, 1793-0480, 37, 10.1142/S1793048018500042
    9. Yoichi Enatsu, Yukihiko Nakata, Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate, 2014, 11, 1551-0018, 785, 10.3934/mbe.2014.11.785
    10. Bruno Buonomo, Marianna Cerasuolo, The effect of time delay in plant--pathogen interactions with host demography, 2015, 12, 1551-0018, 473, 10.3934/mbe.2015.12.473
    11. Anjana Das, M. Pal, A mathematical study of an imprecise SIR epidemic model with treatment control, 2018, 56, 1598-5865, 477, 10.1007/s12190-017-1083-6
    12. Isam Al-Darabsah, Yuan Yuan, A periodic disease transmission model with asymptomatic carriage and latency periods, 2018, 77, 0303-6812, 343, 10.1007/s00285-017-1199-1
    13. Mohamed El Fatini, Idriss Sekkak, Lévy noise impact on a stochastic delayed epidemic model with Crowly–Martin incidence and crowding effect, 2020, 541, 03784371, 123315, 10.1016/j.physa.2019.123315
    14. Global stability for epidemic model with constant latency and infectious periods, 2012, 9, 1551-0018, 297, 10.3934/mbe.2012.9.297
    15. Dimitri Breda, Stefano Maset, Rossana Vermiglio, Numerical recipes for investigating endemic equilibria of age-structured SIR epidemics, 2012, 32, 1553-5231, 2675, 10.3934/dcds.2012.32.2675
    16. Xavier Bardina, Marco Ferrante, Carles Rovira, Stochastic Epidemic SEIRS Models with a Constant Latency Period, 2017, 14, 1660-5446, 10.1007/s00009-017-0977-8
    17. A M Pasion, J A Collera, Delay-induced stability switches in an SIRS epidemic model with saturated incidence rate and temporary immunity, 2019, 1298, 1742-6588, 012006, 10.1088/1742-6596/1298/1/012006
    18. Luca Dell’Anna, Solvable delay model for epidemic spreading: the case of Covid-19 in Italy, 2020, 10, 2045-2322, 10.1038/s41598-020-72529-y
    19. Muhammad Shoaib, Adeeba Haider, Muhammad Asif Zahoor Raja, Kottakkaran Sooppy Nisar, Artificial intelligence knacks-based computing for stochastic COVID-19 SIRC epidemic model with time delay, 2022, 36, 0217-9792, 10.1142/S0217979222501740
    20. Ritwik Bhaduri, Ritoban Kundu, Soumik Purkayastha, Michael Kleinsasser, Lauren J. Beesley, Bhramar Mukherjee, Jyotishka Datta, Extending the susceptible‐exposed‐infected‐removed (SEIR) model to handle the false negative rate and symptom‐based administration of COVID‐19 diagnostic tests: SEIR‐fansy , 2022, 41, 0277-6715, 2317, 10.1002/sim.9357
    21. Jasmina Đorđević, Bojana Jovanović, Dynamical analysis of a stochastic delayed epidemic model with lévy jumps and regime switching, 2023, 360, 00160032, 1252, 10.1016/j.jfranklin.2022.12.009
    22. Sarita Bugalia, Jai Prakash Tripathi, Hao Wang, Mathematical modeling of intervention and low medical resource availability with delays: Applications to COVID-19 outbreaks in Spain and Italy, 2021, 18, 1551-0018, 5865, 10.3934/mbe.2021295
    23. Qiubao Wang, Hao Wu, There exists the “smartest” movement rate to control the epidemic rather than “city lockdown”, 2022, 106, 0307904X, 696, 10.1016/j.apm.2022.02.018
    24. Maximilian Pawleta, Susanne Kiefer, Edeltraud Gehrig, Visualization of relevant parameter dependencies in a delay SEIQ epidemic model — A live script program for didactic and interactive demonstrations, 2023, 14, 1793-9623, 10.1142/S1793962323500423
    25. Md. Mamun-Ur-Rashid Khan, Md. Rajib Arefin, Jun Tanimoto, Time delay of the appearance of a new strain can affect vaccination behavior and disease dynamics: An evolutionary explanation, 2023, 24680427, 10.1016/j.idm.2023.06.001
    26. Jiapu Zhang, 2023, Chapter 28, 978-3-031-36772-4, 897, 10.1007/978-3-031-36773-1_28
    27. Nuning Nuraini, Fadiya Nadhilah Soekotjo, Almira Alifia, Kamal Khairudin Sukandar, Bony Wiem Lestari, Assessing potential surge of COVID-19 cases and the need for booster vaccine amid emerging SARS-CoV-2 variants in Indonesia: A modelling study from West Java, 2023, 9, 24058440, e20009, 10.1016/j.heliyon.2023.e20009
    28. A. Ben Lahbib, L. Azrar, Time delay and nonlinear incidence effects on the stochastic SIRC epidemic model, 2024, 11, 23129794, 84, 10.23939/mmc2024.01.084
    29. Jing Zhang, Tong Jin, A Stochastic Semi-Parametric SEIR Model with Infectivity in an Incubation Period, 2024, 12, 2227-7390, 1580, 10.3390/math12101580
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3397) PDF downloads(1630) Cited by(29)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog