Research article Special Issues

An epidemic model with time delays determined by the infectivity and disease durations


  • Received: 17 March 2023 Revised: 19 May 2023 Accepted: 24 May 2023 Published: 02 June 2023
  • We propose an epidemiological model with distributed recovery and death rates. It represents an integrodifferential system of equations for susceptible, exposed, infectious, recovered and dead compartments. This model can be reduced to the conventional ODE model under the assumption that recovery and death rates are uniformly distributed in time during disease duration. Another limiting case, where recovery and death rates are given by the delta-function, leads to a new point-wise delay model with two time delays corresponding to the infectivity period and disease duration. Existence and positiveness of solutions for the distributed delay model and point-wise delay model are proved. The basic reproduction number and the final size of the epidemic are determined. Both, the ODE model and the delay models are used to describe COVID-19 epidemic progression. The delay model gives a better approximation of the Omicron data than the conventional ODE model from the point of view of parameter estimation.

    Citation: Masoud Saade, Samiran Ghosh, Malay Banerjee, Vitaly Volpert. An epidemic model with time delays determined by the infectivity and disease durations[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12864-12888. doi: 10.3934/mbe.2023574

    Related Papers:

  • We propose an epidemiological model with distributed recovery and death rates. It represents an integrodifferential system of equations for susceptible, exposed, infectious, recovered and dead compartments. This model can be reduced to the conventional ODE model under the assumption that recovery and death rates are uniformly distributed in time during disease duration. Another limiting case, where recovery and death rates are given by the delta-function, leads to a new point-wise delay model with two time delays corresponding to the infectivity period and disease duration. Existence and positiveness of solutions for the distributed delay model and point-wise delay model are proved. The basic reproduction number and the final size of the epidemic are determined. Both, the ODE model and the delay models are used to describe COVID-19 epidemic progression. The delay model gives a better approximation of the Omicron data than the conventional ODE model from the point of view of parameter estimation.



    加载中


    [1] M. Barthélemy, A. Barrat, R. Pastor-Satorras, A. Vespignani, Dynamical patterns of epidemic outbreaks in complex heterogeneous networks, J. Theor. Biol., 235 (2005), 275–288. https://doi.org/10.1016/j.jtbi.2005.01.011 doi: 10.1016/j.jtbi.2005.01.011
    [2] S. Fisher-Hoch, L. Hutwagner, Opportunistic candidiasis: an epidemic of the 1980s, Clin. Infect. Dis., 21 (1995), 897–904. https://doi.org/10.1093/clinids/21.4.897 doi: 10.1093/clinids/21.4.897
    [3] C. Chintu, U. H. Athale, P. Patil, Childhood cancers in zambia before and after the hiv epidemic, Arch. Dis. Child., 73 (1995), 100–105. https://doi.org/10.1136/adc.73.2.100 doi: 10.1136/adc.73.2.100
    [4] R. M. Anderson, C. Fraser, A. C. Ghani, C. A. Donnelly, S. Riley, N. M. Ferguson, et al., Epidemiology, transmission dynamics and control of sars: the 2002–2003 epidemic, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 359 (2004), 1091–1105. https://doi.org/10.1098/rstb.2004.1490 doi: 10.1098/rstb.2004.1490
    [5] W. Lam, N. Zhong, W. Tan, Overview on sars in asia and the world, Respirology, 8 (2003), S2–S5. https://doi.org/10.1046/j.1440-1843.2003.00516.x doi: 10.1046/j.1440-1843.2003.00516.x
    [6] H. Chen, G. Smith, K. Li, J. Wang, X. Fan, J. Rayner, et al., Establishment of multiple sublineages of h5n1 influenza virus in asia: implications for pandemic control, Proc. Natl. Acad. Sci., 103 (2006), 2845–2850. https://doi.org/10.1073/pnas.0511120103 doi: 10.1073/pnas.0511120103
    [7] A. M. Kilpatrick, A. A. Chmura, D. W. Gibbons, R. C. Fleischer, P. P. Marra, P. Daszak, Predicting the global spread of h5n1 avian influenza, Proc. Natl. Acad. Sci., 103 (2006), 19368–19373. https://doi.org/10.1073/pnas.0609227103 doi: 10.1073/pnas.0609227103
    [8] S. Jain, L. Kamimoto, A. M. Bramley, A. M. Schmitz, S. R. Benoit, J. Louie, et al., Hospitalized patients with 2009 h1n1 influenza in the united states, april–june 2009, N. Engl. J. Med., 361 (2009), 1935–1944. https://doi.org/10.1056/NEJMoa0906695 doi: 10.1056/NEJMoa0906695
    [9] M. P. Girard, J. S. Tam, O. M. Assossou, M. P. Kieny, The 2009 a (h1n1) influenza virus pandemic: A review, Vaccine, 28 (2010), 4895–4902. https://doi.org/10.1016/j.vaccine.2010.05.031 doi: 10.1016/j.vaccine.2010.05.031
    [10] T. R. Frieden, I. Damon, B. P. Bell, T. Kenyon, S. Nichol, Ebola 2014—new challenges, new global response and responsibility, N. Engl. J. Med., 371 (2014), 1177–1180. https://doi.org/10.1056/NEJMp1409903 doi: 10.1056/NEJMp1409903
    [11] W. E. R. Team, Ebola virus disease in west africa—the first 9 months of the epidemic and forward projections, N. Engl. J. Med., 371 (2014), 1481–1495. https://doi.org/10.1056/NEJMoa1411100 doi: 10.1056/NEJMoa1411100
    [12] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [13] R. Almeida, S. Qureshi, A fractional measles model having monotonic real statistical data for constant transmission rate of the disease, Fractal Fract., 3 (2019), 53. https://doi.org/10.3390/fractalfract3040053 doi: 10.3390/fractalfract3040053
    [14] S. Sharma, V. Volpert, M. Banerjee, Extended seiqr type model for covid-19 epidemic and data analysis, Math. Biosci. Eng., 2 (2020), 7562-7604. https://doi.org/10.3934/mbe.2020386 doi: 10.3934/mbe.2020386
    [15] F. Brauer, P. Van den Driessche, J. Wu, L. J. Allen, Mathematical epidemiology, Springer, 2008.
    [16] A. d'Onofrio, M. Banerjee, P. Manfredi, Spatial behavioural responses to the spread of an infectious disease can suppress turing and turing–hopf patterning of the disease, Phys. A Stat. Mech. Appl., 545 (2020), 123773. https://doi.org/10.1016/j.physa.2019.123773 doi: 10.1016/j.physa.2019.123773
    [17] G. Q. Sun, Z. Jin, Q. X. Liu, L. Li, Chaos induced by breakup of waves in a spatial epidemic model with nonlinear incidence rate, J. Stat. Mech. Theory Exp., 2008 (2008), P08011. https://doi.org/10.1088/1742-5468/2008/08/P08011 doi: 10.1088/1742-5468/2008/08/P08011
    [18] D. Bichara, A. Iggidr, Multi-patch and multi-group epidemic models: a new framework, J. Math. Biol., 77 (2018), 107–134. https://doi.org/10.1007/s00285-017-1191-9 doi: 10.1007/s00285-017-1191-9
    [19] R. K. McCormack, L. J. Allen, Multi-patch deterministic and stochastic models for wildlife diseases, J. Biol. Dyn., 1 (2007), 63–85. https://doi.org/10.1080/17513750601032711 doi: 10.1080/17513750601032711
    [20] E. H. Elbasha, A. B. Gumel, Vaccination and herd immunity thresholds in heterogeneous populations, J. Math. Biol., 83 (2021), 73. https://doi.org/10.1007/s00285-021-01686-z doi: 10.1007/s00285-021-01686-z
    [21] S. Aniţa, M. Banerjee, S. Ghosh, V. Volpert, Vaccination in a two-group epidemic model, Appl. Math. Lett., 119 (2021), 107197. https://doi.org/10.1016/j.aml.2021.107197 doi: 10.1016/j.aml.2021.107197
    [22] T. S. Faniran, A. Ali, N. E. Al-Hazmi, J. K. K. Asamoah, T. A. Nofal, M. O. Adewole, New variant of sars-cov-2 dynamics with imperfect vaccine, Complexity, 2022 (2022). https://doi.org/10.1155/2022/1062180 doi: 10.1155/2022/1062180
    [23] N. Ahmed, Z. Wei, D. Baleanu, M. Rafiq, M. Rehman, Spatio-temporal numerical modeling of reaction-diffusion measles epidemic system, Chaos Interdiscip. J. Nonlinear Sci., 29 (2019), 103101. https://doi.org/10.1063/1.5116807 doi: 10.1063/1.5116807
    [24] J. Filipe, M. Maule, Effects of dispersal mechanisms on spatio-temporal development of epidemics, J. Theor. Biol., 226 (2004), 125–141. https://doi.org/10.1016/s0022-5193(03)00278-9 doi: 10.1016/s0022-5193(03)00278-9
    [25] M. Martcheva, An introduction to mathematical epidemiology, Springer, 2015.
    [26] F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical models in epidemiology, Springer, 2019.
    [27] H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
    [28] H. S. Hurd, J. B. Kaneene, The application of simulation models and systems analysis in epidemiology: A review, Prev. Vet. Med., 15 (1993), 81–99. https://doi.org/10.1016/0167-5877(93)90105-3 doi: 10.1016/0167-5877(93)90105-3
    [29] S. Ghosh, V. Volpert, M. Banerjee, An epidemic model with time-distributed recovery and death rates, Bull. Math. Biol., 84 (2022), 78. https://doi.org/10.1007/s11538-022-01028-0 doi: 10.1007/s11538-022-01028-0
    [30] V. Volpert, M. Banerjee, S. Petrovskii, On a quarantine model of coronavirus infection and data analysis, preprint, arXiv: 2003.09444.
    [31] S. Ghosh, V. Volpert, M. Banerjee, An epidemic model with time delay determined by the disease duration, Mathematics, 10 (2022), 2561. https://doi.org/10.3390/math10152561 doi: 10.3390/math10152561
    [32] Q. Zheng, J. Shen, V. Pandey, L. Guan, Y. Guo, Turing instability in a network-organized epidemic model with delay, Chaos Solitons Fractals, 168 (2023), 113205. https://doi.org/10.1016/j.chaos.2023.113205 doi: 10.1016/j.chaos.2023.113205
    [33] K. Ciesielski, On stefan banach and some of his results, Banach J. Math. Anal., 1 (2007), 1–10. https://doi.org/10.15352/bjma/1240321550 doi: 10.15352/bjma/1240321550
    [34] J. Quarleri, V. Galvan, M. V. Delpino, Omicron variant of the sars-cov-2: a quest to define the consequences of its high mutational load, Geroscience, (2022), 1–4. https://doi.org/10.1007/s11357-021-00500-4 doi: 10.1007/s11357-021-00500-4
    [35] A. Gowrisankar, T. Priyanka, S. Banerjee, Omicron: a mysterious variant of concern, Eur. Phys. J. Plus., 137 (2022), 1–8. https://doi.org/10.1140/epjp/s13360-021-02321-y doi: 10.1140/epjp/s13360-021-02321-y
    [36] S. Collins, E. Starkman, Coronavirus incubation period, 2022. Available from: https://www.webmd.com/covid/coronavirus-incubation-period.
    [37] J. Ries, Omicron infection timeline: When symptoms start and how long they last, 2022. Available from: https://www.health.com/news/omicron-timeline.
    [38] COVID-19 Coronavirus Pandemic, 2023. Available from: https://www.worldometers.info/coronavirus/.
    [39] S. Ghosh, M. Banerjee, V. Volpert, Immuno-epidemiological model-based prediction of further covid-19 epidemic outbreaks due to immunity waning, Math. Model. Nat. Phenom., 17 (2022), 9. https://doi.org/10.1051/mmnp/2022017 doi: 10.1051/mmnp/2022017
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1735) PDF downloads(122) Cited by(8)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog