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Abstract: We propose an epidemiological model with distributed recovery and death rates. It
represents an integrodifferential system of equations for susceptible, exposed, infectious, recovered and
dead compartments. This model can be reduced to the conventional ODE model under the assumption
that recovery and death rates are uniformly distributed in time during disease duration. Another
limiting case, where recovery and death rates are given by the delta-function, leads to a new point-
wise delay model with two time delays corresponding to the infectivity period and disease duration.
Existence and positiveness of solutions for the distributed delay model and point-wise delay model are
proved. The basic reproduction number and the final size of the epidemic are determined. Both, the
ODE model and the delay models are used to describe COVID-19 epidemic progression. The delay
model gives a better approximation of the Omicron data than the conventional ODE model from the
point of view of parameter estimation.
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1. Introduction

Mathematical modeling of infectious diseases is a valuable tool that has been used to understand
the dynamics by which infections spread, to predict the future progress of an outbreak and to evaluate
strategies to control an epidemic [1]. This tool attracts much attention due to successive epidemics
of viral infections, such as HIV, emerging in the 1980s and still continuing [2, 3], SARS epidemic in
2002–2003 [4, 5], H5N1 influenza in 2005 [6, 7] and H1N1 in 2009 [8, 9], Ebola in 2014 [10, 11].

Mathematical epidemiology was put up to a new level by the SIR model which appeared in the
works published by Kermack and McKendrick [12, 13], stimulated by the Spanish influenza epidemic
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in 1918–1919. Many epidemic models have been evolved from that innovative model, such as
multi-compartment models [14, 15], models with a nonlinear disease transmission rate [16, 17],
multi-patch models [18, 19], multi-group models incorporating the effect of the heterogeneity of the
population [20], and epidemic models with vaccination and other control measures [21, 22]. Random
movement of individuals in the population is considered in spatiotemporal models in order to describe
spatial distributions of susceptible and infected individuals [23, 24]. A more detailed literature review
can be found in the monographs [25, 26] and review articles [27, 28].

The compartmental epidemiological models, like the conventional SEIRD model (Susceptible,
Exposed, Infectious, Recovered, Dead), are based on the assumptions that newly exposed individuals
at time t depend on the rate proportional to the product of the numbers of susceptible individuals S (t)
and infectious individuals I(t), and that the recovery and death rates are proportional to the number of
infected individuals. The first assumption is justified for homogeneous populations, but the second
assumption has a limited applicability because it does not take into account infectivity period and
disease duration, which can lead to a large error. Assuming average disease duration τ, the recovery
and death rates at time t are determined by the number of newly infected individuals at time t − τ,
which can be very different from the number of infected individuals at time t. To take into account
this factor, we consider the recovery and death functions as functions of the time since infection.
However, since distributed recovery and death rates are not easily available, we develop a simpler
delay model which does not require precise immunological data.

Let us recall that exposed individuals are those for whom viral infection develops in the organism,
but they do not yet transmit infection to other individuals. Infectivity of respiratory viral infections
is determined by the level of viral load in the upper respiratory tract. Exposed individuals become
infectious, that is, they transmit the disease to uninfected individuals, when the viral load becomes
sufficiently high. Transition from exposed to infectious compartments for SARS-CoV-2 is from 2
to 5 days, depending on the virus variant. We will call this time period infectivity delay. On the
other hand, appearance of symptoms also occurs several days post-infection, and it corresponds to the
incubation period. Emergence and severity of symptoms is determined by several factors, including
virus virulence and individual immune response. Strictly speaking, incubation period is different from
the infectivity delay, though their duration can be quite close.

In this work, we study the influence of the infectivity and disease duration on the epidemic
progression. We propose a model with two time delays. At every moment t, a number of newly
exposed people will leave the susceptible category. After the first time delay, this group of people will
become infectious. Then, after the disease duration, the members of this group will either recover
or die.

Let us note that the model considered in this work is different from the model considered in [30]
since time delay there was determined by the incubation period and quarantine measures. The model
proposed in this paper depends on the infectivity period rather than incubation period, and disease
duration, without imposed quarantine. Furthermore, in addition to [31], this model takes into account
exposed individuals and two time delays (infectivity and disease durations).

It is noteworthy to mention the impact of time delays on Turing instability and indicate the role
of diffusion in epidemic progression [32]. Stability and bifurcation analysis of equilibrium points can
be useful to reveal the epidemic state. Moreover, the threshold value of time delay provides a way to
control the periodic behavior important for the study of disease progression.
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The contents of the paper are as follows. First, we introduce the model with distributed recovery
and death rates and study the existence, uniqueness and positiveness of its solutions. Next, we show
how we derive the delay model from the distributed model, and we study the existence, uniqueness and
positiveness of its solutions. After that, we calculate some characteristics of epidemic progression in
the delay model. Next, we apply this model to the investigation of Omicron variant of the SARS-CoV-
2 infection, and compare the delay model with the conventional ODE model. After that, we present
an analytical comparison between the growth rates of ODE and delay models. Finally, we present
conclusions and further perspectives.

2. Model with distributed parameters

Let us start the model derivation by the introduction of the class of newly exposed individuals in
the model with distributed recovery and death rates previously developed in [31]. This approach is
appropriate to evaluate daily recovery and death rates. We will study the properties of this model, and
we will reduce it to the delay model in the next section. This model can also be reduced to the SEIRD
model under certain assumptions on the recovery and death rates.

2.1. Model derivation

The size of newly exposed individuals J(t) is determined by the rate of decrease of the size of
susceptible individuals

J(t) = −
dS (t)

dt
. (2.1)

Assuming that
N = S (t) + E(t) + I(t) + R(t) + D(t) (2.2)

is constant, where E(t) is the total size of exposed compartment, I(t) is the total size of infectious
compartment at time t and R(t) and D(t) denote, respectively, recovered and dead. Let τ0 be the
infectivity period. Then J(t − τ0) is the size of newly infectious at time t. Thus,

E′(t) = J(t) − J(t − τ0). (2.3)

Now, differentiating the Eq (2.2), we get:

I′(t) = J(t − τ0) − R′(t) − D′(t). (2.4)

Therefore,

I(t) =
∫ t

0
J(η − τ0)dη − R(t) − D(t). (2.5)

Let ρ(η) and µ(η) be the recovery and death rates depending on the time since being infectious η. Then
ρ(t − η) and µ(t − η) are the recovery and death rates at time t of the individuals became infectious at
time η. Thus, the rate of change of the size of infected individuals who will recover at time t is given
by the expression:

dR(t)
dt
=

∫ t

0
ρ(t − η)J(η − τ0)dη, (2.6)
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and the rate of change of the size of infected individuals who will die at time t:

dD(t)
dt
=

∫ t

0
µ(t − η)J(η − τ0)dη. (2.7)

Here J(η − τ0) is the size of individuals who became exposed at time η − τ0 and infectious at time η.
Thus, we obtain the following integro-differential system of equations:

dS (t)
dt

= −
βS (t)I(t)

N
= (−J(t)), (2.8a)

dE(t)
dt

=
βS (t)I(t)

N
− J(t − τ0), (2.8b)

dI(t)
dt

= J(t − τ0) −
∫ t

0
ρ(t − η)J(η − τ0)dη −

∫ t

0
µ(t − η)J(η − τ0)dη, (2.8c)

dR(t)
dt

=

∫ t

0
ρ(t − η)J(η − τ0)dη, (2.8d)

dD(t)
dt

=

∫ t

0
µ(t − η)J(η − τ0)dη. (2.8e)

2.2. Existence and uniqueness of solution

We will prove the existence and uniqueness of solution of system (2.8) for t ∈ [0,T f ] where
T f ∈ (0,∞), with the initial conditions

S (0) = S 0 > 0, E(0) = 0, I(0) = I0 > 0,R(0) = 0,D(0) = 0,
S (t) = S 0 + I0, E(t) = I(t) = R(t) = D(t) = 0, for t ∈ [−τ0, 0). (2.9)

In what follows we assume that the recovery and death rates satisfy the following inequality∫ t0

η

(ρ(t − η) + µ(t − η))dη ≤ 1, (2.10)

for any η and t0 > η, and ρ(η) = µ(η) = 0 for η < 0. This condition means that the total size of
recovered and dead individuals among those infected at time η remains less than J(η). We assume
that the coefficients are continuous and positive. Note that if J(t) is uniquely determined, then the
Eqs (2.8b), (2.8d) and (2.8e) have unique solutions. Hence, it is sufficient to prove the existence and
uniqueness of solution for the equations (2.8a) and (2.8c).

Before proving the existence and uniqueness of solution, we will verify that the solutions of
system (2.8) with initial conditions (2.9) are positive and bounded.

Lemma 1. If condition (2.10) is satisfied, then any solution of system (2.8) with initial condition (2.9)
satisfies the inequality 0 ≤ A ≤ S 0 + I0, where A ∈ {S (t), E(t), I(t),R(t),D(t)}.

Proof. From (2.8a) we observe that if for some t∗ > 0, S (t∗) = 0, then dS (t)
dt |t=t∗ = 0. This implies that

S (t) ≥ 0 for t > 0. From (2.8d) and (2.8e), we conclude that R(t) and D(t) also remain positive for all t.
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Using the initial conditions (2.9), we have J(t) = 0 for −τ ≤ t < 0 and J(0) = βS 0I0
N > 0. Suppose

t0 > 0 be such that J(t) ≥ 0 for 0 ≤ t < t0. Next, we have

I(t0) =
∫ t0

0
J(η − τ0)dη − R(t0) − D(t0). (2.11)

Integrating (2.8d) and (2.8e) with respect to t from 0 to t0 and taking into account the initial
conditions (2.9), we get

R(t0) + D(t0) =
∫ t0

0

( ∫ t

0
(ρ(t − η) + µ(t − η))J(η − τ0)dη

)
dt.

By changing the order of integration and taking into account inequality (2.10), we find:

R(t0) + D(t0) =
∫ t0

0

( ∫ t0

η

(ρ(t − η) + µ(t − η))dt
)
J(η − τ0)dη ≤

∫ t0

0
J(η − τ0)dη.

Together with (2.11), this gives I(t0) ≥ 0. This implies J(t0) = βS (t0)I(t0)
N ≥ 0. This proves that I(t) and

J(t) remains non-negative for all t ≥ 0. On the other hand, integrating (2.8b) from 0 to t, we get

E(t) =
∫ t

0
J(η)dη −

∫ t

0
J(η − τ0)dη

=

∫ t

0
J(η)dη −

∫ t

τ0

J(η − τ0)dη =
∫ t

0
J(η)dη −

∫ t−τ0

0
J(η)dη =

∫ t

t−τ0
J(η)dη ≥ 0.

Furthermore, S (t)+ E(t)+ I(t)+ R(t)+D(t) = S 0 + I0. Thus, any solution of system (2.8) lies between
0 and S 0 + I0. □

We now proceed to the proof of the existence and uniqueness theorem.

Theorem 2. There exists a unique solution (S (t), I(t)) of system (2.8a) and (2.8c) in the domain Ω2,
where Ω is defined by

Ω = {T ∈ C([0,T f ],R) : 0 ≤ T (t) ≤ S 0 + I0,∀t ∈ [0,T f ], T (t) = 0 : t ∈ [−τ0, 0)}.

To prove this theorem, we need a mathematical setup of complete metric space, which is defined in
the following lemma.

Lemma 3. (Ω, d) is a complete metric space with respect to the metric d(T1,T2) defined by the equality

d(T1,T2) = sup
t∈[−τ0,T f ]

{
e−γt|T1(t) − T2(t)|

}
,

where γ ≥ 0 is some constant.

Proof. First, we prove that Ω is a complete metric space with respect to the supremum metric given by
the equality

dsup(T1,T2) = sup
t∈[−τ0,T f ]

|T1(t) − T2(t)|.
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Consider a Cauchy sequence
{
Tn(t)

}
in Ω. Then for any ϵ > 0, there exists N0 ∈ N such that

dsup(Tn,Tm) = sup
t∈[−τ0,T f ]

|Tn(t) − Tm(t)| < ϵ for n,m ≥ N0.

Therefore, for all t ∈ [−τ0,T f ],
{
Tn(t)

}
is a Cauchy sequence in R, and hence converges to a real

number denoted by T (t). Choose any t ∈ [−τ0,T f ]. Hence, there exists Pt ∈ N such that if p > Pt then
|Tp(t) − T (t)| < ϵ/2.

Furthermore, since
{
Tn

}
is a Cauchy sequence in (Ω, dsup), there exists N1 such that

dsup(Tn,Tm) = sup
t∈[−τ0,T f ]

|Tn(t) − Tm(t)| < ϵ/2 for n,m ≥ N1.

Next, choose p > max{N1, Pt}. Then for all n ≥ N1

|Tn(t) − T (t)| = |Tn(t) − Tp(t) + Tp(t) − T (t)| ≤ |Tn(t) − Tp(t)| + |Tp(t) − T (t)| < ϵ.

Taking supremum over [−τ0,T f ] in both sides of the above inequality, we get

dsup(Tn,T ) < ϵ, for n ≥ N1.

It remains to show that T ∈ Ω. It is clear that for all n ∈ N, 0 ≤ Tn(t) ≤ S 0 + I0, for all t ∈ [0,T f ].
Taking limit as n→ ∞, we get 0 ≤ T (t) ≤ S 0 + I0, for all t ∈ [0,T f ]. Similarly, for all n ∈ N, Tn(t) = 0,
∀t ∈ [−τ0, 0) implies T (t) = 0, ∀t ∈ [−τ0, 0).

Take any t0 ∈ [0,T f ]. Then

lim
t→t0

T (t) = lim
t→t0

lim
n→∞

Tn(t) = lim
n→∞

lim
t→t0

Tn(t) = lim
n→∞

Tn(t0) = T (t0),

which proves that T is continuous at t0. Thus, T ∈ Ω, and hence (Ω, dsup) is a complete metric space.
Next, we have the following relation between the two metrics d and dsup on Ω:

e−γT f dsup(T1,T2) ≤ d(T1,T2) ≤ eγτ0dsup(T1,T2),

which implies that d and dsup are equivalent metrics. This proves that (Ω, d) is a complete metric space.
□

We now proceed to prove the existence and uniqueness of solution of system (2.8a) and (2.8c) in
the metric space (Ω, d). For any given function T (t) ∈ Ω, equation

dS (t)
dt
= −
β

N
S (t)T (t), (2.12)

with initial condition S (0) = S 0 > 0 has a unique solution

S T (t) = S 0e−
β
N

∫ t
0 T (η)dη. (2.13)

Note that subscript T is used to denote the unique solution of Eq (2.12) for a given function T (t) ∈ Ω.
Set JT (t) = β

N S T (t)T (t). Under the assumption that ρ(t) = 0 = µ(t) for t < 0, equation

dI(t)
dt
=
β

N
S T (t − τ0)T (t − τ0) −

∫ t

0
(ρ(t − η) + µ(t − η))JT (η − τ0)dη (2.14)
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with I(0) = I0 > 0 also has a unique solution which can be written in the form

IT (t) = I0 +

∫ t

0
G(η,T )dη, (2.15)

where

G(η,T ) =
β

N
S 0e

−β
N

∫ η−τ0
0 T (ξ)dξT (η−τ0)−

∫ η−τ0

0
(ρ(η−τ0−ξ)+µ(η−τ0−ξ))

β

N
S 0e−

β
N

∫ ξ
0 T (θ)dθT (ξ)dξ. (2.16)

Let us now consider the map L : (Ω, d)→ (Ω, d) defined by the equality

L(T (t)) = I0 +

∫ t

0
G(η,T )dη, (2.17)

where G(η,T ) is given in (2.16). Before proceeding further, we verify that L maps (Ω, d) into itself.

Lemma 4. The map L : (Ω, d)→ (Ω, d) given by equality (2.17) is well defined.

Proof. From (2.13) we obtain
dS T (t)

dt
= −
β

N
S 0e

−β
N

∫ t
0 T (η)dηT (t).

Substituting this relation into (2.16), we can write

G(η,T ) = −
(dS T (η − τ0)

dη
−

∫ η−τ0

0
(ρ(η − τ0 − ξ) + µ(η − τ0 − ξ))

dS T (ξ)
dξ

dξ
)
.

Next,∫ t

0
G(η,T )dη = −

( ∫ t

0

dS T (η − τ0)
dη

dη −
∫ t

0

∫ η−τ0

0
(ρ(η − τ0 − ξ) + µ(η − τ0 − ξ))

dS T (ξ)
dξ

dξ
)
dη

= −

( ∫ t−τ0

0

dS T (η)
dη

dη −
∫ t

0

∫ η−τ0

0
(ρ(η − τ0 − ξ) + µ(η − τ0 − ξ))

dS T (ξ)
dξ

dξ
)
dη.

Changing the order of integration in the right-hand side, we get

∫ t

0
G(η,T )dη = −

( ∫ t−τ0

0

dS T (η)
dη

dη −
∫ t−τ0

0

∫ t

τ0+ξ

(ρ(η − τ0 − ξ) + µ(η − τ0 − ξ))dη
dS T (ξ)

dξ
dξ

)
= −

∫ t−τ0

0

(
1 −

∫ t

τ0+ξ

(ρ(η − τ0 − ξ) + µ(η − τ0 − ξ))dη
)dS T (ξ)

dξ
dξ.

Note that dS T (ξ)
dξ ≤ 0 and following condition (2.10), we conclude that

0 ≤
∫ t

0
G(η,T )dη ≤ −

∫ t−τ0

0

dS T (ξ)
dξ

dξ = S 0 − S T (t − τ0) ≤ S 0.

This implies L(T (t)) = I0 +
∫ t

0
G(η,T )dη lies between 0 and S 0 + I0.

Let us also note that if T1(t),T2(t) ∈ Ω and T1(t) = T2(t), then S T1(t) = S T2(t), and consequently
G(η,T1) = G(η,T2). Hence the map L is well defined. □
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Next, we prove that the map L : (Ω, d)→ (Ω, d) defined in (2.17) is a contraction.

Lemma 5. The map L : (Ω, d)→ (Ω, d) defined in (2.17) is a contraction map.

Proof. For any two functions T1(t),T2(t) ∈ Ω, we obtain the inequality

|L(T1(t)) − L(T2(t))| ≤
∫ t

0
|G(η,T1) −G(η,T2)|dη.

Then we have the following estimate:∣∣∣G(η,T1) −G(η,T2)
∣∣∣ = βS 0

N

∣∣∣∣(e −βN ∫ η−τ0
0 T1(ξ)dξT1(η − τ0) −∫ η−τ0

0
(ρ(η − τ0 − ξ) + µ(η − τ0 − ξ))e

−β
N

∫ ξ
0 T1(θ)dθT1(ξ)dξ

)
−
(
e
−β
N

∫ η−τ0
0 T2(ξ)dξT2(η − τ0)

−

∫ η−τ0

0
(ρ(η − τ0 − ξ) + µ(η − τ0 − ξ))e

−β
N

∫ ξ
0 T2(θ)dθT2(ξ)dξ

)∣∣∣∣.
Therefore,∣∣∣G(η,T1) −G(η,T2)

∣∣∣ = βS 0

N

∣∣∣∣(e −βN ∫ η−τ0
0 T1(ξ)dξ(T1(η − τ0) − T2(η − τ0))

+

∫ η−τ0

0
(ρ(η − τ0 − ξ) + µ(η − τ0 − ξ))e

−β
N

∫ ξ
0 T1(θ)dθ(T2(ξ)dξ) − T1(ξ)dξ))

+(e
−β
N

∫ η−τ0
0 T1(ξ)dξ − e

−β
N

∫ η−τ0
0 T2(ξ)dξ)T2(η − τ0) +

∫ η−τ0

0
(ρ(η − τ0 − ξ)

+µ(η − τ0 − ξ))(e
−β
N

∫ ξ
0 T2(θ)dθ − e

−β
N

∫ ξ
0 T1(θ)dθ)T2(ξ)dξ)

∣∣∣∣.
Using the inequalities |e−x − e−y| ≤ |x − y| and |e−x| ≤ 1, for any x, y ≥ 0, we get

∣∣∣G(η,T1) −G(η,T2)
∣∣∣ ≤ βS 0

N

(
|T1(η − τ0) − T2(η − τ0)|

+

∫ η−τ0

0
(ρ(η − τ0 − ξ) + µ(η − τ0 − ξ))|T2(ξ) − T1(ξ)|dξ

+
β

N
T2(η − τ0)

∫ η−τ0

0
|T1(ξ) − T2(ξ)|dξ

+

∫ η−τ0

0
(ρ(η − τ0 − ξ) + µ(η − τ0 − ξ))

( β
N

∫ ξ

0
|T2(θ) − T1(θ)|dθ

)
T2(ξ)dξ

)
.

Since T j(t) ≤ S 0 + I0, ∀t ∈ [0,T f ], then T j(t) ≤ M, j = 1, 2, where M = S 0 + I0. Next,
|T1(η) − T2(η)| ≤ eγηd(T1,T2). Using this inequality and condition (2.10), we can write

∣∣∣G(η,T1)−G(η,T2)
∣∣∣ ≤ βS 0

N
d(T1,T2)

(
eγ(η−τ0)+

∫ η−τ0

0
eγξdξ+

βM
N

∫ η−τ0

0
eγξdξ+

βM
N

∫ η−τ0

0
(
∫ ξ

0
eγθdθ)dξ

)
.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12864–12888.



12872

Thus,

∣∣∣G(η,T1) −G(η,T2)
∣∣∣ ≤ βS 0

N
d(T1,T2)

(
eγ(η−τ0) +

1
γ

(eγ(η−τ0)

+
βM
Nγ

(eγ(η−τ0) − 1) +
βM
Nγ2 (eγ(η−τ0) − 1)

)
≤
βS 0

N
d(T1,T2)eγ(η−τ0)

(
1 +

1
γ
+
βM
Nγ
+
βM
Nγ2

)
.

This implies the estimate

|L(T1(t)) − L(T2(t))| ≤
βS 0

N
d(T1,T2)

(
1 +

1
γ
+
βM
Nγ
+
βM
Nγ2

) ∫ t

0
eγ(η−τ0)dη.

Since
∫ t

0
eγ(η−τ0)dη ≤

∫ t

0
eγηdη, we get

∣∣∣L(T1(t)) − L(T2(t))
∣∣∣ ≤ βS 0

N
d(T1,T2)

(
1 +

1
γ
+
βM
Nγ
+
βM
Nγ2

) ∫ t

0
eγηdη

=
βS 0

N

(
1 +

1
γ
+
βM
Nγ
+
βM
Nγ2

)eγt − 1
γ

d(T1,T2).

Therefore,

e−γt
∣∣∣L(T1(t)) − L(T2(t))

∣∣∣ ≤ βS 0

N

(1
γ
+

N + βM
Nγ2 +

βM
Nγ3

)
d(T1,T2).

Taking supremum of both sides, we get

d(L(T1), L(T2)) ≤
βS 0

N

(1
γ
+

N + βM
Nγ2 +

βM
Nγ3

)
d(T1,T2).

We choose the value of γ > 0 large enough such that βS 0
N

(
1
γ
+

N+βM
Nγ2 +

βM
Nγ3

)
< 1. Consequently,

L : (Ω, d)→ (Ω, d) is a contraction map on the complete metric space (Ω, d). □

To finish the proof of the existence of solution, we use the following theorem [33].

Theorem 6. Let (X, d) be a complete metric space and let T : X → X be a contraction mapping on X.
Then T has a unique fixed point x ∈ X (such that T (x) = x).

It follows from this theorem that the map L has a unique fixed point. Thus, there exists a unique
function Tu ∈ Ω satisfying the equality Tu(t) = I0 +

∫ t

0
G(η,Tu)dη, where G(η,Tu) is given in (2.16).

Besides, we note that G(η,T ) is a continuous function on [0,T f ]. Hence, the derivative dTu(t)
dt exists.

This completes the proof of the existence and uniqueness of solution of system (2.8).
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2.3. Reduction to the SEIRD Model

Let us assume the uniform distribution of the recovery and death rates:

ρ(t − η) =

ρ0 if t − τ ≤ η ≤ t

0 if η < t − τ
(2.18)

µ(t − η) =

µ0 if t − τ ≤ η ≤ t

0 if η < t − τ
, (2.19)

where τ > 0 is the disease duration, ρ0 and µ0 are small enough constants, and consider the initial
conditions: S (0) = N , E(0) = 0, I(0) = I0 > 0, where I0 is sufficiently small compared to N, R(0) = 0,
D(0) = 0.

From (2.8b), we get

E(t) = E0 +

∫ t

0
J(η)dη −

∫ t

0
J(η − τ0)dη

= E0 +

∫ t

0
J(η)dη −

∫ t−τ0

0
J(η)dη =

∫ t

t−τ0
J(η)dη ≈ τ0J(t − τ0).

Therefore, (2.8b) can be written as follows:

E′(t) = J(t) − λE(t),

where λ = 1/τ0.
Substituting functions (2.18) and (2.19) into (2.8d) and (2.8e) respectively, we get

dR(t)
dt
= ρ0

∫ t

t−τ
J(η − τ0)dη,

dD(t)
dt
= µ0

∫ t

t−τ
J(η − τ0)dη.

Integrating these equalities from t − τ to t, we obtain

R(t) − R(t − τ) = ρ0

∫ t

t−τ

(∫ s

s−τ
J(η − τ0)dη

)
ds,

D(t) − D(t − τ) = µ0

∫ t

t−τ

(∫ s

s−τ
J(η − τ0)dη

)
ds.

Therefore, from (2.5)

I(t) =
∫ t

t−τ
J(η − τ0)dη − (R(t) − R(t − τ)) − (D(t) − D(t − τ)) =

∫ t

t−τ
J(η − τ0)dη − (ρ0 + µ0)

∫ t

t−τ

(∫ s

s−τ
J(η − τ0)dη

)
ds.

Hence,
dI
dt
= J(t − τ0) − (ρ0 + µ0)

∫ t

t−τ
J(η − τ0)dη
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or
dI
dt
= λE(t) − (ρ0 + µ0)

(
I(t) + (ρ0 + µ0)

∫ t

t−τ

(∫ s

s−τ
J(η − τ0)dη

)
ds

)
.

Since (ρ0 + µ0) is assumed to be small enough, we neglect the term involving (ρ0 + µ0)2. Hence, we
obtain

dI
dt
= λE(t) − (ρ0 + µ0)I.

In this case, system (2.8) is reduced to the conventional SEIRD model

dS (t)
dt

= −
βS (t)I(t)

N
, (2.20a)

dE(t)
dt

=
βS (t)I(t)

N
− λE(t), (2.20b)

dI(t)
dt

= λE(t) − (ρ0 + µ0)I(t), (2.20c)

dR(t)
dt

= ρ0I(t), (2.20d)

dD(t)
dt

= µ0I(t). (2.20e)

3. Delay model

3.1. Reduction to the delay model

Let us assume that disease duration is τ, and the individuals J(t − τ0 − τ) infected at time t − τ0 − τ

recover or die at time t with certain probabilities. This assumption corresponds to the following choice
of the functions ρ and µ:

ρ(t − η) = ρ1δ(t − τ − η), µ(t − η) = µ1δ(t − τ − η),

where ρ1 + µ1 = 1, and δ is the Dirac delta-function. Then

dR(t)
dt
=

∫ t

0
ρ(t − η)J(η − τ0)dη =

∫ t

0
ρ1δ(t − τ − η)J(η − τ0)dη = ρ1J(t − τ0 − τ) (3.1)

and

dD(t)
dt
=

∫ t

0
µ(t − η)J(η − τ0)dη =

∫ t

0
µ1δ(t − τ − η)J(η − τ0)dη = µ1J(t − τ0 − τ). (3.2)

Note that J(t) is the number of newly exposed individuals appearing at time t. If we assume that the
first infected case was reported at time t = 0, then we can set J(t) = 0 for all t < 0.

Integrating the Eqs (3.1) and (3.2) from 0 to t and assuming that R(0) = D(0) = 0, we get:

R(t) = ρ1

∫ t

τ0+τ

J(η − τ0 − τ)dη = ρ1

∫ t−τ

τ0

J(x − τ0)dx
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and

D(t) = µ1

∫ t

τ0+τ

J(η − τ0 − τ)dη = µ1

∫ t−τ

τ0

J(x − τ0)dx.

Therefore,

I(t) =
∫ t

τ0

J(x − τ0)dx − R(t) − D(t) =
∫ t

τ0

J(x − τ0)dx − ρ1

∫ t−τ

τ0

J(x − τ0)dx − µ1

∫ t−τ

τ0

J(x − τ0)dx =

∫ t

τ0

J(x − τ0)dx − (ρ1 + µ1)
∫ t−τ

τ0

J(x − τ0)dx.

Since ρ1 + µ1 = 1, then,

I(t) =
∫ t

τ0

J(x − τ0)dx −
∫ t−τ

τ0

J(x − τ0)dx.

Finally, we obtain

I(t) =
∫ t

t−τ
J(x − τ0)dx. (3.3)

Let y = x − τ0. Then

I(t) =
∫ t−τ0

t−τ0−τ
J(y)dy = −

∫ t−τ0

t−τ0−τ
S ′(y)dy = S (t − τ0 − τ) − S (t − τ0). (3.4)

We obtain
dS (t)

dt
= −
βS (t)

N
(S (t − τ0 − τ) − S (t − τ0)) . (3.5)

Then the delay model becomes as follows:

dS (t)
dt

= −J(t), (3.6a)

dE(t)
dt

= J(t) − J(t − τ0), (3.6b)

dI(t)
dt

= J(t − τ0) − J(t − τ0 − τ), (3.6c)

dR(t)
dt

= ρ1J(t − τ0 − τ), (3.6d)

dD(t)
dt

= µ1J(t − τ0 − τ), (3.6e)

J(t) =
βS (t)I(t)

N
. (3.6f)

Here J(t) is the size of newly exposed at time t, J(t − τ0) is the size of newly infectious at time
t, J(t − τ0 − τ) is the size of newly recovered and dead at time t. The term in the right-hand side of
Eq (3.6a) describes the decrease of the size of susceptible due to infection, with the same term with
sign plus in the next equation. The second term in the right-hand side of Eq (3.6b) corresponds to the
decrease of the size of exposed due to their infectiousness, the second term in the right-hand side of
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Eq (3.6c) corresponds to the decrease of the size of infectious due to their recovery or death. The term
in the right-hand side of (3.6d) represents the size of newly recovered individuals, and the term in the
right-hand side of (3.6e) represents the size of newly dead individuals. System (3.6) is completed by
the initial conditions

S (0) = S 0 > 0, E(0) = 0, I(0) = I0 > 0,R(0) = 0,D(0) = 0,
S (t) = S 0 + I0, E(t) = I(t) = R(t) = D(t) = 0, for t ∈ [−τ0 − τ, 0). (3.7)

3.2. Epidemic characteristics for the delay model

3.2.1. Basic reproduction number

From (3.4), we get:
dI(t)

dt
=

S (t − τ0 − τ)
dt

−
S (t − τ0)

dt
.

Then
dI(t)

dt
=
β

N
(S (t − τ0)I(t − τ0) − S (t − τ0 − τ)I(t − τ0 − τ)) . (3.8)

At the beginning of epidemic, we have S (t − τ0) = S (t − τ0 − τ) = S 0. Then

dI(t)
dt
=
βS 0

N
(I(t − τ0) − I(t − τ0 − τ)) . (3.9)

Substituting I(t) = I0ext, we get

xI0ext =
βS 0

N
(I0ex(t−τ0) − I0ex(t−τ0−τ)).

Hence,

x =
βS 0

N
(e−xτ0 − e−x(τ0+τ)). (3.10)

This equation has a positive solution if and only ifℜ0 > 1, whereℜ0 = τβ
S 0
N is the basic reproduction

number.

3.2.2. Final size of epidemic

Let us determine the final size of the susceptible class, S f = limx→∞ S (x). Integrating (3.6a) from 0
to∞, we get ∫ ∞

0

dS (t)
S (t)

=
−β

N

∫ ∞

0

(∫ t

t−τ
J(η − τ0)dη

)
dt

By changing the order of integration,

ln
(

S 0

S f

)
=
β

N

(∫ 0

−τ

∫ η+τ

0
J(η − τ0)dηdt +

∫ ∞

0

∫ η+τ

η

J(η − τ0)dη)dt
)

=
β

N

(∫ 0

−τ

(η + τ)J(η − τ0)dη +
∫ ∞

0
τJ(η − τ0)dη

)
,
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where J(t) = 0 if t < 0. Therefore,

ln
(

S 0

S f

)
=
β

N

∫ ∞

τ0

τJ(η − τ0)dη =
βτ

N

∫ ∞

0
J(x)dx.

Since J(x) = −S ′(x), then
ln w = ℜ0(w − 1), (3.11)

where w = S f

S 0
. This equation is the same as for model (2.20), but the basic reproduction number is

different.

Figure 1. Left: dependence of S f on β found analytically as solution of equation (3.11).
Right: dependence of growth rates on β found analytically by formulas (3.13) (magenta) and
(3.14) (cyan) for τ0 = 2, τ = 6, N = 105, S 0 = N − 1.

Integrating (3.6d) and (3.6e) and taking the limits as t → ∞, we obtain the final size of recovered
and dead populations:

R f = ρ1(S 0 − S f ), D f = µ1(S 0 − S f ). (3.12)

3.3. Growth rates for SEIRD and delay model

Linearizing the delay model about the disease free equilibrium, we obtain the equation for the
principal eigenvalue ν which determines infection growth rate:

ν =
βS 0

N
e−ντ0(1 − e−ντ). (3.13)

A similar equation for the SEIRD model is as follows:(
ν +

1
τ0

) (
ν +

1
τ

)
=
βS 0

Nτ0
, (3.14)

where incubation rate λ = 1
τ0

and recovery and death rates of model (2.20) satisfy ρ0 + µ0 =
1
τ
.

The delay model (3.6) has higher growth rate (larger ν) for the same basic reproduction number as
compared to the ODE basic model (2.20). A higher growth rate can lead to higher peak of epidemic
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achieved much earlier. Thus, to describe the epidemic progression more precisely, basic reproduction
number is not sufficient, rather the estimate of the growth rate can give better description of the
epidemic progression. Note that the curves of growth rate are above the β−axis for β > 1

τ
which

corresponds toℜ0 > 1.

4. Numerical simulation and model comparison

In this section we present some numerical simulations to validate the proposed model and to
compare its results with real data and with the SEIRD model. We will compare modelling results with
reported active cases for the Omicron variant of the SARS-CoV-2 infection. The Omicron variant was
reported to the World Health Organization (WHO) by the Network for Genomics Surveillance in
South Africa on 24 November 2021 [34, 35]. It was first detected in Botswana and has spread to
become the predominant variant in circulation around the world.

The Omicron variant has a shorter incubation period, compared to other variants, from 1 to 4
days [36]. While BA.5, like previous Omicron subvariants, seems to spread more easily than other
COVID-19 variants, the symptoms have generally been milder and have a shorter duration of six to
seven days [37]. These data allow us to estimate the values of time delay, namely, infectivity period
and disease duration. Furthermore, recovery and death rates are also evaluated from the
epidemiological data [38]. The value of β is chosen to fit the data. The values of parameters can differ
for different countries.

The parameters of the SEIRD model (2.20) can be obtained from the corresponding parameters of
the delay model (3.6):

λ =
1
τ0
, ρ0 =

ρ1

τ
, µ0 =

µ1

τ
.

The initial conditions for the delay model are as follows:

S (t) = N for − θ ≤ t ≤ 0, I(t) = I− for − θ ≤ t < 0, I(0) = I0,

where θ = τ + τ0. The values I− and I0 are determined from the epidemiological data, the former as
an average value for this time period, the latter is the number of daily new cases in the beginning of
simulations. Though the data are not usually precise, and the relative error can be quite large in the
beginning of outbreak, it appears that the results of the simulations and the best-fit value of β are not
very sensitive to the initial conditions.

The results of numerical simulations for different countries are shown in Figure 2. The delay model
gives a good approximation of the data, while the SEIRD model is less accurate. We can notice that
the maximum number of infected individuals in the delay model (3.6) is much higher than for the
conventional ODE model (2.20). Also, the time to maximum infected in the delay model is less than
for the conventional ODE model. As it is follows from the derivation of the SEIRD model from the
distributed delay model, it overestimates the recovery and death rates witch leads to an underestimation
in the active cases. The variation of β (Figure 3) does not essentially improve the description of the
data by the SEIRD model.
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(a) (b)

(c) (d)

Figure 2. Numerical simulations of the delay model (3.6) and SEIRD model (2.20) for
different countries and for the period of time from November 15, 2021 to May 15, 2022. (a)
β = 0.23, τ0 = 2, τ = 6, ρ1 = 0.97, µ1 = 0.03, N = 331.9 × 106, I− = 130000, I0 = 257235;
(b) β = 0.276, τ0 = 3, τ = 6, ρ1 = 0.97, µ1 = 0.03, N = 67.75 × 106, I− = 9000, I0 = 23557;
(c) β = 0.326, τ0 = 2, τ = 4, ρ1 = 0.97, µ1 = 0.03, N = 83.2 × 106, I− = 14000, I0 = 19050;
(d) β = 0.596, τ0 = 1, τ = 2, ρ1 = 0.97, µ1 = 0.03, N = 143.4× 106, I− = 15000, I0 = 15450.

5. Discussion

In this work we develop an epidemiological model with distributed recovery and death rates and
with exposed (infected but not infectious) individuals which were not considered in the previous
study [29, 39]. This distributed delay model represents a system of integro-differential equations. It is
an appropriate tool to study epidemic progression which allows an accurate desciption of its
dynamics. A disadvantage of this model is that it is relatively complex and that it requires the
knowledge of distributed recovery and death rates which may not be available in the literature.

In order to compensate this disadvantage of the distributed model, we derive from it two simplified
models corresponding to different limiting cases. In the first one, where it is assumed that recovery

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12864–12888.



12880

(a) (b)

Figure 3. Numerical simulations of the SEIRD model (2.20). Left: the values for disease
transmission rates are from β = 0.23 to β = 0.281 (green curves), τ0 = 2, τ = 6, ρ1 = 0.97,
µ1 = 0.03, N = 331.9×106. Right: β = 0.4, λ = 0.5, ρ0+µ0 ∈ {0.25, 0.2381, 0.2222, 0.2128},
N = 331.9 × 106, I0 = 150000.

and death rates are uniformly distributed, we obtain conventional compartmental SEIRD model. In
the second case, where these distributions are delta-functions, we obtain a new delay model, which
was not previously considered in the epidemiological literature. Since distributed recovery and death
rates are described by gamma-distributions [29, 39], the approximation by the delta-function can be
more appropriate than by a uniform distribution which overestimates recoveries and deaths during first
several days post-infection.

The point-wise delay model is quite simple, it has a clear biological meaning, and it is determined by
two main parameters: time delay before infected individual becomes infectious and disease duration.
Both of them can be easily determined from the clinical data for each particular viral infection (or
virus variant). Two other parameters, recovery and death rates are also known. The only unknown
parameter, disease transmission rate β, is determined by the comparison with the data on new daily
infections. It appears that this model gives a good description of the COVID-19 epidemic progression
in different countries.

Since the SEIRD model is obtained under the assumption of uniform distribution of recovery and
death rates, then it overestimates recoveries and deaths and underestimates the number of infectious
individuals. As a result, epidemic progression is slower than in the delay model and in the data. We
can observe that the maximum number of infected individuals in the delay model is much higher
than for the conventional ODE model. Also, the time to maximum infected in the delay model is
less than for the conventional ODE model. Furthermore, the delay model (3.6) has a higher growth
rate in comparison with the SEIRD model (2.20). A higher growth rate can lead to a higher peak of
epidemic achieved much earlier. Therefore, to describe the epidemic progression more precisely, it is
not sufficient to rely only on the basic reproduction number, but also on the estimation of the growth
rate which can give a better description of the epidemic progression.

As it is indicated above, the SEIRD model overestimates recoveries and deaths during first time
interval post-infection. Therefore, in order to describe the data with this model, we need to increase
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the disease transmission rate β but then also to increase even more recovery and death rate. In the
example shown in Figure 3(b), the average disease duration becomes 4 days for the SEIRD model,
while it is 6 days for the delay model, in agreement with the clinical data. Altogether, this gives the
value of the basic reproduction number 1.6 for the SEIRD model instead of 1.32 for the delay model.

Thus, SEIRD and delay models represent two different limiting cases of the distributed delay model.
Both of them can describe the epidemic progression, but the delay model seems to be more precise from
the point of view of parameter estimation.

Finally, let us note that the delay model presented in this work is generic but a little bit more
complex than the delay model presented in [31] because it has one additional compartment. It describes
epidemic progression with three parameters β, τ0 and τ, which can be easily estimated from the data.
This approach opens further applications to more complex multi-compartment models consisting of
different groups of susceptible and/or infected and to immuno-epidemic models with time-varying
recovery and death rates [39]. It is also interesting to check the applicability of the proposed model to
other transmissible diseases.
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Appendix: Existence and uniqueness of solution of the delay model

We will prove the existence and uniqueness of solution of system (3.6) for t ∈ [0,T f ] where T f ∈

(0,∞), with the initial conditions (3.7).
Note that if J(t) is uniquely determined, then Eqs (3.6b), (3.6d) and (3.6e) have unique solutions.

Hence, it is sufficient to prove the existence and uniqueness of solution for the equations (3.6a) and
(3.6c). Before proving the existence and uniqueness of solution, we will verify that the solutions of
system (3.6) with initial conditions (3.7) are positive and bounded.

Lemma 7. Any solution of system (3.6) with initial condition (3.7) satisfies the inequality 0 ≤ A ≤
S 0 + I0, where A ∈ {S (t), E(t), I(t),R(t),D(t)}.

Proof. From (3.6a) we observe that if for some t∗ > 0, S (t∗) = 0, then dS (t)
dt |t=t∗ = 0. This implies that

S (t) ≥ 0 for t > 0. From (3.6d)and (3.6e), we conclude that R(t) and D(t) also remain positive for all t.
Integrating (3.6b) from 0 to t we get

E(t) =
∫ t

0
J(η)dη −

∫ t

0
J(η − τ0)dη

=

∫ t

0
J(η)dη −

∫ t

τ0

J(η − τ0)dη =
∫ t

0
J(η)dη −

∫ t−τ0

0
J(η)dη =

∫ t

t−τ0
J(η)dη ≥ 0.

Next, integrating (3.27c) from 0 to t, we have

I(t) = I(0) +
∫ t

0
J(η − τ0)dη −

∫ t

0
J(η − τ0 − τ)dη.

Since J(t) = 0 for t < 0, then

I(t) = I(0) +
∫ t

τ0

J(η − τ0)dη −
∫ t

τ0+τ

J(η − τ0 − τ)dη

= I(0) +
∫ t−τ0

0
J(η)dη −

∫ t−τ0−τ

0
J(η)dη

= I(0) +
∫ t−τ0

t−τ0−τ
J(η)dη ≥ 0.

This gives I(t) ≥ 0. Furthermore, S (t)+E(t)+ I(t)+R(t)+D(t) = S 0+ I0. Thus, any solution of system
(3.6), lies between 0 and S 0 + I0. □

Let us proceed to the proof of the existence and uniqueness theorem.

Theorem 8. There exists a unique solution (S (t), I(t)) of system (3.6a) and (3.6c) in the domain Ω2,
where Ω is defined by

Ω = {T ∈ C([0,T f ],R) : 0 ≤ T (t) ≤ S 0 + I0,∀t ∈ [0,T f ], T (t) = 0 : t ∈ [−τ0 − τ, 0)}.

To prove this theorem, we use a mathematical setup of complete metric space, which is defined
properly in the following lemma.
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Lemma 9. (Ω, d) is a complete metric space with respect to the metric d(T1,T2) defined by

d(T1,T2) = sup
t∈[−τ0−τ,T f ]

{
e−γt|T1(t) − T2(t)|

}
,

and γ ≥ 0 is a constant.

Proof. The proof is similar to that of Lemma 3. □

We now proceed to prove the existence and uniqueness of solution of system (3.6a) and (3.6c) in
the metric space (Ω, d). For any given function T (t) ∈ Ω, equation

dS (t)
dt
= −
β

N
S (t)T (t), (A.1)

with initial condition S (0) = S 0 > 0 has a unique solution

S T (t) = S 0e−
β
N

∫ t
0 T (η)dη. (A.2)

Note that subscript T is used to denote the unique solution of Eq (A.1) for a given function T (t) ∈ Ω.
Let us denote JT (t) = β

N S T (t)T (t), then equation

dI(t)
dt
=
β

N
S T (t − τ0)T (t − τ0) −

β

N
S T (t − τ0 − τ)T (t − τ0 − τ) (A.3)

with I(0) = I0 > 0 also has a unique solution which can be written in the form

IT (t) = I0 +

∫ t

0
G(η,T )dη, (A.4)

where
G(η,T ) =

β

N
S 0e

−β
N

∫ η−τ0
0 T (ξ)dξT (η − τ0) −

β

N
S 0e

−β
N

∫ η−τ0−τ
0 T (ξ)dξT (η − τ0 − τ). (A.5)

Let us now consider the map L : (Ω, d)→ (Ω, d) defined by the equality

L(T (t)) = I0 +

∫ t

0
G(η,T )dη, (A.6)

where G(η,T ) is given in (A.5). Before proceeding further, we verify that L maps (Ω, d) into itself.

Lemma 10. The map L : (Ω, d)→ (Ω, d) defined in (A.6) is well-defined.

Proof. From (A.2) we obtain
dS T (t)

dt
= −
β

N
S 0e

−β
N

∫ t
0 T (η)dηT (t).

Substituting this relation into (A.5), we can write

G(η,T ) = −
(dS T (η − τ0)

dη
−

dS T (η − τ0 − τ)
dη

)
.
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Next, ∫ t

0
G(η,T )dη = −

( ∫ t

0

dS T (η − τ0)
dη

dη −
∫ t

0

dS T (η − τ0 − τ)
dη

dη
)

= −

( ∫ t−τ0

0

dS T (η)
dη

dη −
∫ t−τ0−τ

0

dS T (η)
dη

dη
)
.

Thus,

0 ≤
∫ t

0
G(η,T )dη = S T (t − τ0 − τ) − S T (t − τ0) ≤ S 0.

This implies L(T (t)) = I0 +
∫ t

0
G(η,T )dη lies between 0 and S 0 + I0.

Let us also note that if T1(t),T2(t) ∈ Ω and T1(t) = T2(t), then S T1(t) = S T2(t), and consequently
G(η,T1) = G(η,T2). Hence, the map L is well-defined. □

Next, we prove that the map L : (Ω, d)→ (Ω, d) defined in (A.6) is a contraction.

Lemma 11. The map L : (Ω, d)→ (Ω, d) defined in (A.6) is a contraction map.

Proof. For any two functions T1(t),T2(t) ∈ Ω,

|L(T1(t)) − L(T2(t))| ≤
∫ t

0
|G(η,T1) −G(η,T2)|dη.

Then we have the following estimate:

∣∣∣G(η,T1) −G(η,T2)
∣∣∣ = βS 0

N

∣∣∣∣(e −βN ∫ η−τ0
0 T1(ξ)dξT1(η − τ0) − e

−β
N

∫ η−τ0−τ
0 T1(ξ)dξT1(η − τ0 − τ)

)
−(

e
−β
N

∫ η−τ0
0 T2(ξ)dξT2(η − τ0) − e

−β
N

∫ η−τ0−τ
0 T2(ξ)dξT2(η − τ0 − τ)

)∣∣∣∣.
Therefore,∣∣∣G(η,T1) −G(η,T2)

∣∣∣ = βS 0

N

∣∣∣∣e −βN ∫ η−τ0
0 T1(ξ)dξ(T1(η − τ0) − T2(η − τ0))

+e
−β
N

∫ η−τ0−τ
0 T1(ξ)dξ(T2(η − τ0 − τ) − T1(η − τ0 − τ))

+(e
−β
N

∫ η−τ0
0 T1(ξ)dξ − e

−β
N

∫ η−τ0
0 T2(ξ)dξ)T2(η − τ0)

+(e
−β
N

∫ η−τ0−τ
0 T2(ξ)dξ − e

−β
N

∫ η−τ0−τ
0 T1(ξ)dξ)T2(η − τ0 − τ)

∣∣∣∣.
Using the inequalities |e−x − e−y| ≤ |x − y| and |e−x| ≤ 1, for any x, y ≥ 0, we get

∣∣∣G(η,T1) −G(η,T2)
∣∣∣ ≤ βS 0

N

(
|T1(η − τ0) − T2(η − τ0)|

+ |T1(η − τ0 − τ) − T2(η − τ0 − τ)|

+
β

N
T2(η − τ0)

∫ η−τ0

0
|T1(ξ) − T2(ξ)|dξ
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+
β

N
T2(η − τ0 − τ)

∫ η−τ0−τ

0
|T1(ξ) − T2(ξ)|dξ

)
.

Since T j(t) ≤ S 0 + I0, ∀t ∈ [0,T f ], we get T j(t) ≤ M, j = 1, 2, where M = S 0 + I0.
Next, |T1(η) − T2(η)| ≤ eγηd(T1,T2).
Using the inequality, we can write

∣∣∣G(η,T1) −G(η,T2)
∣∣∣ ≤ βS 0

N
d(T1,T2)

(
eγ(η−τ0) + eγ(η−τ0−τ) +

βM
N

∫ η−τ0

0
eγξdξ +

βM
N

∫ η−τ0−τ

0
eγξdξ

)
.

Thus, ∣∣∣G(η,T1) −G(η,T2)
∣∣∣ ≤ βS 0

N
d(T1,T2)

(
eγ(η−τ0) + eγ(η−τ0−τ)

+
βM
Nγ

(eγ(η−τ0) − 1) +
βM
Nγ

(eγ(η−τ0−τ) − 1)
)

∣∣∣G(η,T1) −G(η,T2)
∣∣∣ ≤ βS 0

N
d(T1,T2)

(
2eγ(η−τ0)

+
βM
Nγ

eγ(η−τ0) +
βM
Nγ

eγ(η−τ0)
)

≤ 2
βS 0

N
d(T1,T2)eγ(η−τ0)

(
1 +
βM
Nγ

)
.

This implies the estimate

|L(T1(t)) − L(T2(t))| ≤ 2
βS 0

N
d(T1,T2)

(
1 +
βM
Nγ

) ∫ t

0
eγ(η−τ0)dη.

Since
∫ t

0
eγ(η−τ0)dη ≤

∫ t

0
eγηdη, we get

∣∣∣L(T1(t)) − L(T2(t))| ≤ 2
βS 0

N
d(T1,T2)

(
1 +
βM
Nγ

) ∫ t

0
eγ(η)dη

= 2
βS 0

N

(
1 +
βM
Nγ

)eγt − 1
γ

d(T1,T2).

This implies

e−γt
∣∣∣L(T1(t)) − L(T2(t))

∣∣∣ ≤ 2
βS 0

N

(1
γ
+
βM
Nγ2

)
d(T1,T2).

Taking the supremum of both sides, we get

d(L(T1), L(T2)) ≤ 2
βS 0

N

(1
γ
+
βM
Nγ2

)
d(T1,T2).

We choose the value of γ > 0 large enough such that 2βS 0
N

(
1
γ
+
βM
Nγ2

)
< 1. Consequently,

L : (Ω, d)→ (Ω, d) is a contraction map on the complete metric space (Ω, d). □
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Finally, we use Theorem 6, which completes the proof of the existence and uniqueness of solution
of system (3.6).
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