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Abstract. We present a two delays SEIR epidemic model with a saturation

incidence rate. One delay is the time taken by the infected individuals to
become infectious (i.e. capable to infect a susceptible individual), the second

delay is the time taken by an infectious individual to be removed from the

infection. By iterative schemes and the comparison principle, we provide global
attractivity results for both the equilibria, i.e. the disease-free equilibrium

E0 and the positive equilibrium E+, which exists iff the basic reproduction

number R0 is larger than one. If R0 > 1 we also provide a permanence result
for the model solutions. Finally we prove that the two delays are harmless in

the sense that, by the analysis of the characteristic equations, which result to

be polynomial trascendental equations with polynomial coefficients dependent
upon both delays, we confirm all the standard properties of an epidemic model:

E0 is locally asymptotically stable for R0 < 1 and unstable for R0 > 1, while

if R0 > 1 then E+ is always asymptotically stable.

1. Introduction. In recent years, attempts have been made by many authors to
analyse the global stability properties of delay epidemiological models with a general
nonlinear infection rate. For example, Takeuchi and coworkers analysed SIR, SIS,
SEIR and SEI epidemic delay models [4, 5, 6] by constructing Lyapunov functionals
and thus generalizing to the delay case the general approach by Lyapunov functions
proposed by Korobeinikov for non-delayed epidemic models with a very general
infection rate ([7] and the references therein). Even very interesting contribution
to the topic has been recently presented by Xu and Ma [12] and by Xu and Du
[11], who analysed, by using iterative schemes and comparison principles, global
attractivity properties of the equilibria respectively of an SEIRS delay model and
of an SIR delay epidemic model, where the non-linear infection rate is the one
introduced by Capasso and Serio [2] with a saturated incidence rate with respect to
the infectious individuals. In [11] there is one constant delay which represents the
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constant infectious period after which the infected individuals are removed, whereas
in [12] the delay represents the constant latency time which is the time taken by an
infected individual to become infectious. In [11, 12] the authors have paid attention
also to the analysis of the characteristic equation. While in [12] they show that the
delay is harmless in inducing stability switches that modify the standard stability
behaviour of the equilibria, for the delay SIR model in [11] they confirm the local
stability property only for the disease-free equilibrium (i.e. if the basic reproduction
number R0 < 1 then it is asymptotically stable and if R0 > 1 it becomes unstable),
whereas for the endemic equilibrium (i.e. R0 > 1) they refer to a result by Beretta
and Kuang [1] but leave the problem open.

In our paper, we modify the SIR delay epidemic model presented in [11] by
introducing the class of the exposed individuals and by considering two (constant)
delays. The first delay τ1 is the constant latency time and represents the time taken
by a susceptible individual that, infected at time t becomes infectious I, i.e. capable
to infect other susceptibles, but only at a time t+ τ1: the infected individuals who
are not yet infectious are called exposed E and they stand in the exposed class for
the time τ1. The second delay τ2 is the constant infectious period and represents the
time necessary to remove the infectious individuals I from the cycle of the infection.
Therefore, an individual infected at time t will be removed at time t+ τ1 + τ2 and
it stands in the infectious class I for a time τ2. We assume that the removed
individuals R cannot return to the susceptible class S. A possible interpretation is
that τ2 is the time taken by an infectious individual before presenting the symptoms
of the infection, with the assumption that the infectious individuals I are removed
from the infection as soon as the symptoms appear. In this case the infection is
transmitted by the asymptomatic infectious I. This could be the case, for example,
of SARS where all individuals with symptoms are removed ([9] and the references
therein).

According to the above remarks, our model is an SEIR model with two delays
and we assume for it the same nonlinear rate of infection as in [11, 12]. With
these assumptions it turns out to be a generalization of the delay SIR model in [11]
and [13] with constant infectious period. Moreover in [13] the infection rate is a
bilinear function in S and I. Our model becomes coincident with the SIR model in
[11] if we assume τ1 = 0, thus implying that the exposed class E(t) is identically
vanishing. If we further assume a bilinear infection rate in S and I we also obtain
the model in [13]. An interesting aspect of the model is that the characteristic
equation at the endemic equilibrium can be reduced to a second order trascendental
polynomial equation with two delays, where the polynomial coefficients are real
functions of both delays. By its analysis, we prove that, whenever it exists, the
endemic equilibrium is locally asymptotically stable, that is, the delays τ1 and τ2

are harmless in inducing stability switches. Though we prove that the endemic
equilibrium is globally attractive only if the sup of the incidence rate is less than
the susceptibles death rate constant (as in [11]), our feeling is that we should be able
to prove that, whenever it exists, the endemic equilibrium is globally asymptotically
stable, for example by using the Lyapunov functional approach (see [8, Section 2.5])
but with different Lyapunov functions with respect to those considered in [4, 5, 6]
since their method seems not working in our model. However, this is left as a future
work.

The structure of the paper is the following: in Section 2 we introduce the model
equations with their main properties and we also present all the results that we are
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going to prove in the paper. In Section 3 we analyse the characteristic equation at
the disease-free equilibrium as well as at the endemic one. Section 4 (together with
Appendix A) is devoted to a permanence result for the solutions of the model. In
Section 5 we prove attractivity results for both equilibria. Conclusions are driven
in Section 6.

2. The model equations. Herefollowing we introduce the necessary notation and
the model equations.

We denote by S the susceptible individuals; by E the exposed individuals, who
have been infected and take a time τ1 to become infectious, i.e. capable to infect
the susceptible individuals S; by I the infectious individuals, capable to infect the
susceptibles and who take a time τ2 to be removed from the infection; finally, R
denotes the removed individuals, for which we assume that they cannot return to
the susceptible class because they have been “quarantined” and/or they acquire
permanent immunity. It is assumed τ := (τ1, τ2) ∈ R2

+.
As far as the parameters of the model are concerned, Λ and µ1 are the constant

recruitment and death rate, respectively, of susceptibles S; µ2 is the constant death
rate for both exposed E and infectious I; µ3 is the constant death rate for removed
R; it is assumed Λ ∈ R+ as well as µi ∈ R+, i = 1, 2, 3. Of course, we could assume
different death rate constants for exposed E and infectious I individuals, but this
would not change the results, while enabling us to slightly simplify the notation.

While denoting the rate of infection f(S, I), we assume the structure (see [2, 11,
12])

f(S, I) := g(I)S (1)

with a saturated incidence rate

g(I) :=
βI

1 + αI
(2)

with respect to the number I of the infectious individuals. With β, α ∈ R+, βI is a
measure of the force of infection and 1

1+αI accounts for the inhibition effect on the
rate of infection when I becomes large.

By assuming

(A.1) µ1 = min
i=1,2,3

{µi}, µ2 = max
i=1,2,3

{µi}

and by taking into account that the rate of infection at time t is g(I(t))S(t) and
that the exposed individuals that become infectious I at time t are those infected at
the previous time t− τ1, multiplied for the fraction e−µ2τ1 of the exposed survived
in the time interval [t − τ1, t], we get the evolution equation for the exposed E(t).
By similar arguments we can write the evolution equations also for I(t) and R(t),
while the one for S(t) is standard. Thus, the model equations are

dS(t)

dt
= Λ− µ1S(t)− g(I(t))S(t)

dE(t)

dt
= g(I(t))S(t)− g(I(t− τ1))S(t− τ1)e−µ2τ1 − µ2E(t)

dI(t)

dt
= g(I(t− τ1))S(t− τ1)e−µ2τ1

−g(I(t− τ1 − τ2))S(t− τ1 − τ2)e−µ2(τ1+τ2) − µ2I(t)
dR(t)

dt
= g(I(t− τ1 − τ2))S(t− τ1 − τ2)e−µ2(τ1+τ2) − µ3R(t).

(3)
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Before providing the initial conditions for system (3), we want to note that it can
also be rewritten by formally integrating the delay differential equations for E(t),
I(t) and R(t) as follows:

dS(t)

dt
= Λ− µ1S(t)− g(I(t))S(t)

E(t) =

τ1∫
0

g(I(t− θ))S(t− θ)e−µ2θdθ

I(t) =

τ1+τ2∫
τ1

g(I(t− θ))S(t− θ)e−µ2θdθ

R(t) = R(0)e−µ3t

+e−µ2(τ1+τ2)

t∫
0

g(I(θ − τ1 − τ2))S(θ − τ1 − τ2)e−µ3(t−θ)dθ

(4)

with initial conditions that, for biological reasons, are positive continuous functions
S(θ) = ϕ1(θ) and I(θ) = ϕ2(θ) for θ ∈ [−(τ1 +τ2), 0], with S(0) > 0, E(0), I(0) > 0
satisfying

E(0) =

0∫
−τ1

g(ϕ2(θ))ϕ1(θ)eµ2θdθ, I(0) =

−τ1∫
−(τ1+τ2)

g(ϕ2(θ))ϕ1(θ)eµ2θdθ

and R(0) ≥ 0.

2.1. Positivity. We see that the positivity of the above initial conditions for S and
I in [−(τ1 + τ2), 0] imply positivity for all solutions (S(t), E(t), I(t), R(t)), t > 0, of
system (3) or (4), simply considering recurrence arguments applied to the integral
forms for E(t), I(t) and R(t) in (4). We further note that S(t) can never vanish

since at each time t > 0 where S(t) vanishes it is dS(t)
dt = Λ > 0.

We can also prove the following.

Lemma 2.1. The compact set

Ω :=

{
(S,E, I,R) ∈ R4

+0 :
Λ

µ2

≤ S + E + I +R ≤ Λ

µ1

}
is globally attractive and invariant for the solutions of (3).

Proof. By defining N(t) := S(t) + E(t) + I(t) + R(t), according to (3) and by
Assumption (A.1) we get

Λ− µ2N(t) ≤ dN(t)

dt
≤ Λ− µ1N(t)

for t ≥ 0 with initial condition N(0) > 0. Thus, we obtain(
N(0)− Λ

µ2

)
e−µ2t +

Λ

µ2

≤ N(t) ≤
(
N(0)− Λ

µ1

)
e−µ1t +

Λ

µ1

for all t ≥ 0, which proves the Lemma.

Since Ω is a limit set for system (3), in the sequel we assume initial conditions
satisfying

(A.2) Λ
µ2
≤ N(0) ≤ Λ

µ1
.
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2.2. Equilibria. From (3) it is easy to see that the Disease-Free Equilibrium (DFE)
is

E0 :=

(
Λ

µ1

, 0, 0, 0

)
which exists for all values of the parameters. As far as the interior (positive) equi-
librium E+ is concerned, first we need to define the basic reproduction number R0

according to the definition in [4], extended to a delayed epidemic model.
The basic reproductive number is the mean number of secondary cases that a

typical infected case will cause in a population with no immunity to the disease in
the absence of interventions to control the infection:

R0 := Pi
1

µ2

(
e−µ2τ1 − e−µ2(τ1+τ2)

)
where 1/µ2 is the mean infection period and e−µ2τ1 − e−µ2(τ1+τ2) is the probability
of an infected people to be in the infectious period. Thus 1

µ2

(
e−µ2τ1 − e−µ2(τ1+τ2)

)
is the mean infectious period. Pi is the initial maximum infection rate:

Pi = g′(0)S0.

Observe that g′(0)S0 = ∂f(S0,0)
∂I , where S0 is the initial susceptible population i.e.,

according to the first equation in (3), is the equilibrium value of susceptibles in the
absence of infection: S0 = Λ/µ1. Therefore

R0 :=
1

µ2

∂f(S0, 0)

∂I

(
e−µ2τ1 − e−µ2(τ1+τ2)

)
.

Accordingly, the interior (positive) equilibrium is

E+ := (S+, E+, I+, R+)

of components 

S+ :=
Λ

µ1

β + αµ1R0

R0(β + αµ1)

E+ :=
Λβ(R0 − 1)

µ2R0(β + αµ1)
(1− e−µ2τ1)

I+ :=
µ1(R0 − 1)

β + αµ1

R+ :=
Λβ(R0 − 1)

µ3R0(β + αµ1)
e−µ2(τ1+τ2)).

(5)

which exists iff the basic reproduction number, which according to the previous
definition is

R0 =
βΛ

µ1µ2

e−µ2τ1(1− e−µ2τ2), (6)

satisfies R0 > 1.
From (5) we see that E+ → E0 as R0 → 1+ and that the infection rate (1) at

the equilibrium E+ is

f(S+, I+) =
Λβ(R0 − 1)

R0(β + αµ1)
.

The delay domain of existence of the positive equilibrium E+ requires R0 > 1.
If we denote it by Ω+ we have:

Ω+ =

{
τ = (τ1, τ2) ∈ R2

+ : τ1 < h(τ2) :=
1

µ2

ln

[
βΛ

µ1µ2

(1− e−µ2τ2)

]}
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and, of course,R0 = 1 when τ1 = h(τ2) for (τ1, τ2) ∈ R2
+. Furthermore, notice that

τ1 < τ∗1 :=
1

µ2

ln

(
βΛ

µ1µ2

)
and

τ2 > τ∗2 :=
1

µ2

ln

(
βΛ

βΛ− µ1µ2

)
hold in Ω+, i.e. E+ exists if the time taken to become infectious τ1 is sufficiently
small and the asymptomatic infectivity period τ2 is sufficiently large, Figure 1.
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Figure 1. the delay domain of existence (above the curve) of the
positive equilibrium E+.

The above results can be summarized in the following Lemma.

Lemma 2.2. If the parameters in (3) satisfy

(i) βΛ ≤ µ1µ2 then for all delays (τ1, τ2) ∈ R2
+ the basic reproduction number is

R0 < 1 and therefore only the DFE E0 is feasible;
(ii) βΛ > µ1µ2 we have two cases

a) R0 ≤ 1 and therefore only the DFE E0 is feasible;
b) R0 > 1, then the positive equilibrium E+ is feasibe besides E0.

Concerning the equilibria of the model we give below the main results, which
will be proved in the forthcoming sections. In particular, Theorems 2.4 and 2.6
about global attractivity will be proved in Section 5; Theorems 2, 2.5 and 2.8 about
stability will be proved in Section 3; finally Theorem 2.7 on permanence of solutions
will be proved in Section 4. About this latter we recall the following.
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Definition 2.3. The dynamical system (3) is permanent if there exists a compact
subset, say Σ ⊂ int(R4

+0), such that Σ is positively invariant for (3) and its solutions
are ultimately bounded in Σ.

First of all, the following statement is a particular case of the forthcoming The-
orem 2.4 since βΛ ≤ µ1µ2 implies R0 < 1.

Corollary 1. If βΛ ≤ µ1µ2 only the DFE E0 is feasible and it is globally attractive,
i.e. for all initial conditions the solutions of (3) satisfy

lim
t→∞

(S(t), E(t), I(t), R(t)) =

(
Λ

µ1

, 0, 0, 0

)
.

Secondly, by assuming βΛ > µ1µ2 we have the following results.

Theorem 2.4. If R0 ≤ 1 the DFE E0 is globally attractive.

Corollary 2. If R0 < 1 the DFE E0 is locally asymptotically stable.

Theorem 2.5. If R0 > 1 the DFE E0 is unstable.

Theorem 2.6. The positive equilibrium E+ is globally attractive if α > β
µ1

.

Theorem 2.7. System (3) is permanent provided R0 > 1 and β
αµ1

< R0.

Theorem 2.8. Whenever it exists, the equilibrium E+ is locally asymptotically
stable.

Remark 1. Notice that the condition α > β
µ1

in Theorem 2.6 can also be read as

sup
I>0

g(I) < µ1.

3. The reduced system and the characteristic equation. In this section we
want to prove Theorems 2.5 and 2.8 by the help of the characteristic equation at
E0 and E+, respectively. In particular, we assume the global attractivity results of
Theorems 2.4 and 2.6, which will be proved in Section 5, to hold true.

Herefollowing we denote by p := (Λ, α, β, µ1, µ2, µ3, τ1, τ2) the vector of all real
parameters of model (3). They belong either to

Γ :=

{
p ∈ R8

+ :
βΛ

µ1µ2

> 1

}
when we are dealing with the characteristic equation at E0 or to

Γ+ :=

{
p ∈ R6

+ × Ω+ :
βΛ

µ1µ2

> 1

}
when we are dealing with the characteristic equation at E+, respectively.

Since in (3) the evolution equations for S(t) and I(t) do not contain the variables
E(t) and R(t), in order to compute the characteristic equation at any equilibrium
E = (S∗, E∗, I∗, R∗) it is sufficient to consider the characteristic equation of the
reduced system

dS(t)

dt
= Λ− µ1S(t)− g(I(t))S(t)

dI(t)

dt
= g(I(t− τ1))S(t− τ1)e−µ2τ1

−g(I(t− τ1 − τ2))S(t− τ1 − τ2)e−µ2(τ1+τ2) − µ2I(t)

(7)
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at E = (S∗, I∗). In fact, it is easy to check that the characteristic roots, i.e. the
solutions of the characteristic equation, for the complete system (3) are either the
negative ones λ = −µi, i = 2, 3 (due to the second and fourth equations), or given
by the solutions of the characteristic equation of the reduced system (7), which
reads

G(λ; p) = 0 (8)

where

G(λ; p) := (µ2 + λ)(µ1 + g(I∗) + λ)− (µ1 + λ)g′(I∗)S∗e−(µ2+λ)τ1

+(µ1 + λ)g′(I∗)S∗e−(µ2+λ)(τ1+τ2) (9)

with p ∈ Γ or p ∈ Γ+ according to which equilibrium is considered.
Thus, at E+ the characteristic equation is given by (8) whose associated charac-

teristic function (9) has, according to (5), coefficients
g(I∗) =

βµ1(R0 − 1)

β + αµ1R0

g′(I∗)S∗ =
βΛ

µ1

β + αµ1

R0(β + αµ1R0)

(10)

and p ∈ Γ+.
Similarly, at the DFE E0, the coefficients in (9) are g(I∗) = 0

g′(I∗)S∗ =
βΛ

µ1

.

and so, for p ∈ Γ,

G(λ; p) = (µ1 + λ)

[
λ+ µ2 −

βΛ

µ1

e−(µ2+λ)τ1 +
βΛ

µ1

e−(µ2+λ)(τ1+τ2)

]
= 0.

Thus, beyond the characteristic roots λ = −µi, i = 1, 2, 3, the other roots are
solutions of

∆(λ; p) = 0 (11)

with

∆(λ; p) := λ+ µ2 −
βΛ

µ1

e−(µ2+λ)τ1 +
βΛ

µ1

e−(µ2+λ)(τ1+τ2) (12)

for p ∈ Γ. We can notice that a root of (11) is λ = −µ2, while λ = 0 is another root
when R0 = 1.

Proof of Theorem 2.5. Consider ∆(λ; p) in (12) as a continuous function of the real
variable λ and observe that, by (6),

∆(0; p) = µ2 −
(
βΛ

µ1

e−µ2τ1 − βΛ

µ1

e−µ2(τ1+τ2)

)
= µ2

[
1− βΛ

µ1µ2

e−µ2τ1(1− e−µ2τ2)

]
= µ2(1−R0).

Then R0 > 1 implies ∆(0; p) < 0 and, being ∆(λ; p) → +∞ as λ → +∞ for all
p ∈ Γ, there is at least one positive root of (11).
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Proof of Corollary 2. As already anticipated, at the DFE E0, the solutions of (8)
are either the real negative characteristic roots λ = −µi, i = 1, 2, 3, or the solutions
of (11). Let λ = α+iω be any of these latter. We have to prove that R0 < 1 implies
α < 0.

The real part of (12) for λ = α+ iω reads

α = −µ2 +
βΛ

µ1

e−(µ2+α)τ1 cos(ωτ1)− βΛ

µ1

e−(µ2+α)(τ1+τ2) cos(ω(τ1 + τ2)).

If we assume R0 = 1, i.e. µ2 = βΛ
µ1
e−µ2τ1 − βΛ

µ1
e−µ2(τ1+τ2), then the previous

equation becomes

α = −βΛ

µ1

e−µ2τ1
[
1− e−ατ1 cos(ωτ1)

]
+
βΛ

µ1

e−µ2(τ1+τ2)
[
1− e−α(τ1+τ2) cos(ω(τ1 + τ2))

]
≤ 0.

Since at R0 = 1 the DFE E0 is globally attractive by virtue of Theorem 2.4, then
all the characteristic roots λ have α ≤ 0.

Assume instead R0 < 1, i.e. µ2 >
βΛ
µ1
e−µ2τ1 − βΛ

µ1
e−µ2(τ1+τ2). This inequality

implies

α < −βΛ

µ1

e−µ2τ1
[
1− e−ατ1 cos(ωτ1)

]
+
βΛ

µ1

e−µ2(τ1+τ2)
[
1− e−α(τ1+τ2) cos(ω(τ1 + τ2))

]
≤ 0.

thus proving the local asymptotic stability.

Before going through the proof of Theorem 2.8, we recall that the characteristic
roots at E+ are either the real negative ones λ = −µi, i = 2, 3, or the solutions of (8)
with (9) having coefficients (10). We notice that (8) is a second order trascendental
polynomial equation in λ of the kind

P0(λ; p) + P1(λ; p)e−λτ1 + P2(λ; p)e−λ(τ1+τ2) = 0

where the polynomial coefficients in Pl(λ; p), l = 0, 1, 2, are continuously differen-
tiable real functions with respect to p ∈ Γ+, and moreover they depend on both
delays τ = (τ1, τ2). Then, the following (standard) properties hold:

(i) in any open set D of the complex plane C, the complex function G : D×Γ+ →
C is analytic;

(ii) since the polynomial coefficients are real, for any ω ∈ R+ the symmetry prop-
erty G(iω, p) = 0⇔ G(−iω, p) = 0 holds for all p ∈ Γ+;

(iii) there exist a principal part, i.e.

deg(P0(λ; p)) > max {deg(P1(λ; p)),deg(P2(λ; p))} .

These properties together with Rouché’s Theorem imply that the number of zeros
of G(λ; p) in C+ (i.e. the right-hand side of C) can change only if a root appears on
or crosses the imaginary axis. Furthermore, for any (λ, p) ∈ D×Γ+ the function (9)
satisfies the Implicit Function Theorem extended to complex-valued functions (e.g.
[10, Theorem A.3, p.152]), This ensures the continuous dependence of the roots λ
of (8) upon p.

Proof of Theorem 2.8. E+ exists if and only if τ = (τ1, τ2) ∈ Ω+. As previously ob-
served, the associated characteristic roots λ depend continuously on all parameters
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p ∈ Γ+ and their multiplicities in C+ can change only if at least one root appears
on or crosses the imaginary axis.

By Theorem 2.6 we know that the global attractivity of E+ holds if β
α < µ1.

Then all roots λ satisfy <(λ) ≤ 0 for all τ ∈ Ω+ if β
α < µ1.

Our aim here is to prove that for all p ∈ Γ+ the characteristic roots λ cannot

reach the imaginary axis. This implies that if β
α < µ1 then all charactreristic roots

λ satisfy <(λ) < 0 for all delays τ ∈ Ω+, and that all the characteristic roots remain
with <(λ) < 0 for all p ∈ Γ+.

Let us first notice from (8) that, for all p ∈ Γ+,

G(0; p) =
µ2µ1(β + αµ1)

β + αµ1R0
(R0 − 1) > 0

since E+ exists iff R0 > 1. Thus, we exclude that λ = 0 is a root. Therefore, thanks
to the simmetry property (ii), it remains to prove that G(iω, p) 6= 0 for ω ∈ R+ and
p ∈ Γ+. Let then λ = iω, ω ∈ R+, which turns (8) into

(µ2 + iω)(µ1 + g(I∗) + iω) − (µ1 + iω)g′(I∗)S∗e−(µ2+iω)τ1

+ (µ1 + iω)g′(I∗)S∗e−(µ2+iω)(τ1+τ2) = 0
(13)

For the sake of simplicity, set c1 = c1(ω) := cos (ωτ1), c2 = c2(ω) := cos (ωτ2) and
c12 = c12(ω) := cos (ω(τ1 + τ2)) and, similarly, s1, s2 and s12 for the sinus. Further,
let be e1 := e−µ2τ1 and e2 := e−µ2τ2 . By using Euler’s formula and by separating
real and imaginary parts in (13) we get that if ω satisfies (13) then it must satisfy{

µ2(µ1 + g(I∗))− ω2 = g′(I∗)S∗e1[µ1c1 + ωs1 − e2(µ1c12 + ωs12)]
ω(µ2 + µ1 + g(I∗)) = g′(I∗)S∗e1[ωc1 − µ1s1 − e2(ωc12 − µ1s12)].

If there exists ω satisfying both the above equations, then it must also satisfy the
following one obtained by squaring and summing them member to member (of
course, the condition is necessary but not sufficient):

[µ2(µ1 + g(I∗)) − ω2]2 + [ω(µ2 + µ1 + g(I∗))]2

= [g′(I∗)S∗e1]2
{

[µ1c1 + ωs1 − e2(µ1c12 + ωs12)]2

+[ωc1 − µ1s1 − e2(ωc12 − µ1s12)]2
}
.

(14)

As for the left-hand side of (14) we obtain

[µ2(µ1 + g(I∗)) − ω2]2 + [ω(µ2 + µ1 + g(I∗))]2

= µ2
2(µ1 + g(I∗))2 + ω4 − 2ω2µ2(µ1 + g(I∗))

+ω2
[
µ2

2 + (µ1 + g(I∗))2 + 2µ2(µ1 + g(I∗))
]

= µ2
2(µ1 + g(I∗))2 + ω4 + ω2

[
µ2

2 + (µ1 + g(I∗))2
]

= (µ2
2 + ω2)

[
(µ1 + g(I∗))2 + ω2

]
.

As for the right-hand side of (14), by neglecting the costant [g′(I∗)S∗e1]2 at a first
time, we obtain

[µ1c1 + ωs1 − e2(µ1c12 + ωs12)]2 + [ωc1 − µ1s1 − e2(ωc12 − µ1s12)]2

= [µ2
1c

2
1 + ω2s2

1 + e2
2µ

2
1c

2
12 + e2

2ω
2s2

12 + 2µ1ωc1s1

−2µ2
1e2c1c12 − 2µ1ωe2c1s12 − 2µ1ωe2s1c12 − 2ω2e2s1s12

+2µ1ωe
2
2c12s12] + [ω2c21 + µ2

1s
2
1 + e2

2ω
2c212 + e2

2µ
2
1s

2
12

−2µ1ωc1s1 − 2ω2e2c1c12 + 2µ1ωe2c1s12 + 2µ1ωe2s1c12

−2µ2
1e2s1s12 − 2µ1ωe

2
2c12s12]

= (µ2
1 + ω2)(c21 + s2

1) + e2
2(µ2

1 + ω2)(c212 + s2
12)

−2µ2
1e2(c1c12 + s1s12)− 2ω2e2(c1c12 + s1s12).



SEIR WITH LATENCY AND INFECTIOUS PERIOD 941

Since c21 + s2
1 = 1, c212 + s2

12 = 1 and c1c12 + s1s12 = c2, the latter reads

[µ1c1 + ωs1 − e2(µ1c12 + ωs12)]2 + [ωc1 − µ1s1 − e2(ωc12 − µ1s12)]2

= (µ2
1 + ω2)(1 + e2

2 − 2e2c2).

Therefore (14) becomes

(µ2
2 + ω2)[(µ1 + g(I∗))2 + ω2] = [g′(I∗)S∗e1]2(µ2

1 + ω2)(1 + e2
2 − 2e2c2). (15)

Now, by substituting (6), (10) and c2 = cos (ωτ2) in (15) we get

(µ2
2 + ω2)

[(
µ1 +

βµ1(R0 − 1)

β + αµ1R0

)2

+ ω2

]
=

[
βΛ

µ1

β + αµ1

R0(β + αµ1R0)
e1

]2

(µ2
1 + ω2)(1 + e2

2 − 2e2 cos (ωτ2))

that, after some manipulations, can be rewritten as[
1 +

(
ω

µ2

)2
]
µ2

1R2
0 + ω2

(
β+αµ1R0

β+αµ1

)2

µ2
1 + ω2

=
1 + e2

2 − 2e2 cos (ωτ2)

(1− e2)2
. (16)

Let us now define the functions

H(ω) :=
1 + e2

2 − 2e2 cos (ωτ2)

(1− e2)2

for the right member of (16) and

K(ω) := L(ω)
µ2

1R2
0 + ω2

(
β+αµ1R0

β+αµ1

)2

µ2
1 + ω2

with

L(ω) := 1 +

(
ω

µ2

)2

for the left one. It is not difficult to see that in Ω+ where R0 > 1, it always
holds K(ω) > L(ω). If we are able to prove that L(ω) > H(ω), then the equation
K(ω) = H(ω), i.e. (16), can never be verified in Ω+. This leads to the absurd that
iω can solve the characteristic equation (8).

To this aim let us observe that H is periodic with period 2π/τ2 and always

assume values in

[
1,
(

1+e2
1−e2

)2
]
, with H(0) = 1 and H(π/τ2) =

(
1+e2
1−e2

)2

. Further

H ′(ω) = 2τ2e2 sin (ωτ2)
(1−e2)2 , whereas L(ω) is trivially increasing with L′(ω) = 2ω/µ2

2.

Hence H ′(0) = L′(0) = 0, and both functions start from 1 in ω = 0 (remember
that, by simmetry, we are analysing only the case ω ≥ 0) with horizontal tangent to
grow up to a maximum in ω = π/τ2 for H and indefinitely for L. Since L′′(ω) = 2

µ2
2

is constant, whereas H ′′(ω) =
2τ2

2e2 cos (ωτ2)
(1−e2)2 is decreasing for ω ∈ [0, π/τ2], with

H ′′(0) =
2τ2

2e2
(1−e2)2 , a sufficient condition to ensure that L(ω) > H(ω) always holds

is L′′(0) > H ′′(0). Now, the difference L′′(0) −H ′′0) = 2
µ2
2
− 2τ2

2e2
(1−e2)2 is, unless for

multiplicative constants, a function of the parameters product µ2τ2. In particular,
µ2
2

2 [L′′(0) −H ′′(0)] = 1 − (µ2τ2)2e2
(1−e2)2 = φ(µ2τ2). By the change of variable x = µ2τ2

we obtain φ(x) = 1− x2e−x

(1−e−x)2 , which is asymptotically increasing from zero to 1 in

(0,+∞), Figure 2. Since x = 0 is excluded in Ω+, we obtain φ(x) > 0 for any x > 0
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and, therefore, L′′(0)−H ′′(0) > 0 which in sequence implies L(ω) > H(ω), K(ω) >
H(ω) and the absurd G(iω, p) = 0, p ∈ Γ+, from which the thesis follows.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Figure 2. the function φ used in the proof of Theorem 2.8.

4. Permanence of the solutions. In this and in the forthcoming section we make
use of the following Lemmas (e.g. [3, pp.83-84]).

Lemma 4.1 (Fatou Lemma). Let {fn}n∈N0
be a measurable sequence of non-ne-

gative functions defined on a measurable set Ω. Then∫
Ω

lim inf
n→+∞

fndx ≤ lim inf
n→+∞

∫
Ω

fndx.

Lemma 4.2 (Inverse Fatou Lemma). Let {fn}n∈N0
be a measurable sequence of

functions defined on a measurable set Ω. If there exists a non-negative integrable
function g defined on Ω and such that fn ≤ g on Ω for all n, then

lim sup
n→+∞

∫
Ω

fndx ≤
∫
Ω

lim sup
n→+∞

fndx.

About the permanence of the solutions of system (3), we first prove the following
result.

Lemma 4.3. Under Assumtion (A.2), if R0 > 1 then all solutions of (3) are
ultimately bounded in the compact set

ΩS :=

{
(S,E, I,R) ∈ R4

+0 : S + E + I +R ≤ Λ

µ1

, S ≥ νS
}



SEIR WITH LATENCY AND INFECTIOUS PERIOD 943

where

νS =
Λ

µ1

µ1αR0

αµ1R0 + β(R0 − 1)
.

Proof. From (A.2) and the positivity of the solutions we have

lim sup
t→+∞

S(t) ≤ Λ

µ1

. (17)

By (2), the third equation in (4) and Lemma 4.2 we obtain

lim sup
t→+∞

I(t) ≤
τ1+τ2∫
τ1

β lim sup
t→+∞

(
I(t− θ)S(t− θ)

1 + αI(t− θ)

)
e−µ2θdθ. (18)

From (17) and (18) it follows that

lim sup
t→+∞

I(t) ≤
lim sup
t→+∞

I(t)

1 + αlim sup
t→+∞

I(t)
R0.

Being lim sup
t→+∞

I(t) > 0 (if not, i.e. lim
t→+∞

I(t) = 0, then the global attractivity of the

DFE E0 follows from Theorem 2.4 in contradiction to the existence of E+), then

lim sup
t→+∞

I(t) ≤ R0 − 1

α
.

By the first equation in (3) and this latter inequality, for sufficiently large times we
get

dS(t)

dt
≥ Λ−

[
g

(
R0 − 1

α

)
+ µ1

]
S(t)

and, by the comparison principle,

lim inf
t→+∞

S(t) ≥ Λ

µ1

µ1

g
(R0−1

α

)
+ µ1

=: νS

which completes the proof.

Since the solutions of (3) are ultimately bounded in ΩS , without loss of generality
we assume that the initial conditions belong to ΩS . Now we are ready to prove
Theorem 2.7.

Proof of Theorem 2.7. Since (3) is ultimately bounded in ΩS , it is sufficient to prove
that there exist positive constants νI , νE and νR such that

lim inf
t→+∞

I(t) ≥ νI , lim inf
t→+∞

E(t) ≥ νE , lim inf
t→+∞

R(t) ≥ νR.

The key point is to prove the first inequality, from which the other two easily
follow. We start by proving that lim inf

t→+∞
I(t) > 0. According to Lemma 4.3 we

therefore give continuous and positive initial conditions S(θ) = ϕ1(θ) ≥ νS and
I(θ) = ϕ2(θ) ≥ εI > 0 for θ ∈ Ω0 := [−(τ1 + τ2), 0], where we have set

εI := min
θ∈Ω0

I(θ). (19)
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Denoted by Σn := [nτ1, (n+ 1)τ1] , n ∈ N0, we consider the positive real axis of
times R+0 as covered by the union of these infinitely many intervals Σn in such a
way that

R+0 =

+∞⋃
n=0

Σn.

By the third equation in (4) we can write

I(t) =

−τ1∫
−(τ1+τ2)

g(I(t+ u))S(t+ u)eµ2udu (20)

and we see that t ∈ Σn implies t + u ∈ Ωn := [(n− 1)τ1 − τ2, nτ1] since u ∈
[−(τ1 + τ2),−τ1]. With k depending upon the value of τ2 in relation to that of τ1

(see Appendix A), we have

Ωn ⊆
k⋃
j=0

Σn−j

Ωn ∩ Σn−j 6= φ, j = 0, 1, . . . , k, n ≥ k.
(21)

From (20) we have that if t ∈ Σn then

I(t) ≥ g
(

min
t+u∈Ωn

I(t+ u)

)
νS
µ2

e−µ2τ1(1− e−µ2τ2)

from which, by defining

Φ(R0) :=
βνS
µ2

e−µ2τ1(1− e−µ2τ2) =
µ1αR2

0

αµ1R0 + β(R0 − 1)
, (22)

we obtain

I(t) ≥
g

(
min

t+u∈Ωn

I(t+ u)

)
β

Φ(R0). (23)

Denoting by In := min
t∈Σn

I(t) and by εn a constant lower bound for I(t) over Σn such

that In ≥ εn, n ∈ N0, we can define the sequence {εn}n∈N0
of lower bounds for I(t)
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over Σn according to (19), (21), (22) and (23):

t ∈ Σ0 , I(t) ≥
g

(
min

t+u∈Ω0

I(t+ u)

)
β

Φ(R0) =
g (εI)

β
Φ(R0) =: ε0

t ∈ Σ1 , I(t) ≥
g

(
min

t+u∈Ω1

I(t+ u)

)
β

Φ(R0)

≥ g (min {εI , ε0})
β

Φ(R0) =: ε1

· · ·

t ∈ Σn , I(t) ≥
g

(
min

t+u∈Ωn

I(t+ u)

)
β

Φ(R0)

≥
g

(
min {In−1, In−2, . . . , In−k}

)
β

Φ(R0)

≥ g (min {εn−1,εn−2, . . . , εn−k})
β

Φ(R0) =: εn

(24)

for n ∈ N0 such that n ≥ k. Of course, t→ +∞ iff n→ +∞.
Now let us notice that the following inequalities are equivalent:{

εI ≤ ε0 ⇔ εI ≤ εc
εI > ε0 ⇔ εI > εc.

(25)

where

εc :=
1

α
[Φ(R0)− 1] =

µ1(R0 − 1)
(
R0 − β

αµ1

)
αµ1R0 + β(R0 − 1)

by (22). This shows that εc > 0 if R0 > 1 and β
αµ1

< R0. According to (24) and

(25), for the sequence {εn}n∈N0
we have the following results:

(i) if εI ≤ εc then {εn}n∈N0
is non-decreasing, i.e. εn ≥ ε0 > 0 for all n ∈ N0;

(ii) if εI > εc then {εn}n∈N0
is strictly decreasing, i.e. εn > εn+1 for all n ∈ N0.

Now we prove that in case (ii) the strictly decreasing sequence {εn}n∈N0
must

satisfy lim
n→+∞

εn ≥ εc. If not (i.e. if lim
n→+∞

εn < εc), there exists n∗ ∈ N0 such that

εn∗ < εc = 1
α [Φ(R0) − 1], which implies εn∗ < g(εn∗ )

β Φ(R0). Since {εn} is strictly

decreasing and εn∗+1 = g(εn∗ )
β Φ(R0), we get to the contradiction εn∗ < εn∗+1.

Therefore, we can conclude that in either case (i) and (ii)

lim
n→+∞

εn > 0⇒ lim inf
t→+∞

I(t) > 0 (26)

holds.
Now, from (4), (20) and by Lemma 4.1 it follows

lim inf
t→+∞

I(t) = lim inf
t→+∞

−τ1∫
−(τ1+τ2)

g(I(t+ u))S(t+ u)eµ2udu

≥
βlim inf
t→+∞

I(t)

1 + αlim inf
t→+∞

I(t)
lim inf
t→+∞

S(t).
1

µ2

e−µ2τ1(1− e−µ2τ2).
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This latter, together with Lemma 4.3 and (22), provides

lim inf
t→+∞

I(t) ≥
lim inf
t→+∞

I(t)

1 + αlim inf
t→+∞

I(t)
Φ(R0)

and, by (26),

1 + αlim inf
t→+∞

I(t) ≥ Φ(R0),

i.e.

lim inf
t→+∞

I(t) ≥ 1

α
[Φ(R0)− 1] = εc =: νI

which, again by Lemma 4.3, let the last differential equation in (3) imply that, for
a sufficiently large time T > 0,

dR(t)

dt
≥ e−µ2(τ1+τ2)g(νI)νS − µ3R(t)

for all t > T . Then, the comparison principle implies

lim inf
t→+∞

R(t) ≥ e−µ2(τ1+τ2)g(νI)νS
µ3

=: νR.

Finally, by applying Lemma 4.1 to the second equation in (4), i.e.

E(t) =

0∫
−τ1

g(I(t+ u))S(t+ u)eµ2udu,

we obtain

lim inf
t→+∞

E(t) ≥ g(νI)νS(1− e−µ2τ1)

µ2

=: νE

which completes the proof of the permanence of system (3).

5. Global attractivity results. In this section we present the proofs of Theorem
2.4 on the global attractivity of the DFE E0 when R0 ≤ 1 and of Theorem 2.6 on
the global attractivity of the positive equilibrium E+ when β

α < µ1. The proofs
are performed with the help of Lemmas 4.1 and 4.2 of Section 4 and by using
comparison arguments which are close to those alredy used in the recent paper
[11] by Xu and Du on a SIR model with one delay, i.e. constant infectious period.
We extend their results to the SEIR model with two delays (3). In particular, in
the proof of Theorem 2.6 we introduce the explicit dependence of the sequences of
upper and lower bounds upon the basic reproduction number R0, then proving the
decreasing strict monotonicity of the upper bounds and the increasing one for the
lower bounds. Hence, herefollowing we recall the key points of the proofs leaving
most of the details to the appropriate references in the above mentioned paper.

Proof of Theorem 2.4. By the structure of the model equations in (4) we see that
if for all initial conditions we prove that

lim
t→+∞

I(t) = 0, (27)

then it is easy to prove (see [11, Theorem 4.2, p.14]) that

lim
t→+∞

S(t) =
Λ

µ1
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and

lim
t→+∞

R(t) = lim
t→+∞

E(t) = 0

and, therefore,

lim
t→+∞

(S(t), E(t), I(t), R(t)) = E0.

By virtue of the positivity of the solutions, to prove (27) it is sufficient to prove
that lim sup

t→+∞
I(t) = 0 whenever R0 ≤ 1. To this end, from the third equation in (4)

and by the use of Lemma 4.2 we have

lim sup
t→+∞

I(t) = lim sup
t→+∞

τ1+τ2∫
τ1

g(I(t− θ))S(t− θ)e−µ2θdθ

≤
τ1+τ2∫
τ1

βlim sup
t→+∞

I(t)

1 + αlim sup
t→+∞

I(t)
lim sup
t→+∞

S(t)e−µ2θdθ

≤ Λβ

µ1

lim sup
t→+∞

I(t)

1 + αlim sup
t→+∞

I(t)

τ1+τ2∫
τ1

e−µ2θdθ

=

lim sup
t→+∞

I(t)

1 + αlim sup
t→+∞

I(t)
R0.

Then
lim sup
t→+∞

I(t)

1 + αlim sup
t→+∞

I(t)

[
R0 − 1− αlim sup

t→+∞
I(t)

]
≥ 0. (28)

In this latter, the left-hand side is negative for R0 ≤ 1, unless for requiring
lim sup
t→+∞

I(t) = 0, which satisfies (28) with the equality sign. This proves the as-

sertion.

Proof of Theorem 2.6. Let us denote

S := lim sup
t→+∞

S(t), I := lim sup
t→+∞

I(t), R := lim sup
t→+∞

R(t),

S := lim inf
t→+∞

S(t), I := lim inf
t→+∞

I(t), R := lim inf
t→+∞

R(t).

We have to prove that

S = S = S+, I = I = I+, R = R = R+.

We proceed by constructing sequences
{
Sn
}
n∈N0

,
{
In
}
n∈N0

and
{
Rn
}
n∈N0

of upper

bounds

S ≤ Sn, I ≤ In, R ≤ Rn
which are strictly decreasing, and sequences {Sn}n∈N0

, {In}n∈N0
, {Rn}n∈N0

of lower
bounds

Sn ≤ S, In ≤ I, Rn ≤ R

which are strictly increasing, satisfying

lim
n→+∞

Sn = S+ = lim
n→+∞

Sn,

lim
n→+∞

In = I+ = lim
n→+∞

In
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and

lim
n→+∞

Rn = R+ = lim
n→+∞

Rn.

Since n→ +∞ implies that t→ +∞, then:

lim
t→+∞

(S(t), E(t), I(t), R(t)) = E+.

In order to construct the above sequences (for the details see [11, Theorem 4.1,
p.11]) we start with

lim sup
t→+∞

S(t) ≤ Λ

µ1

=: S1. (29)

From the third equation in (4) it follows

lim sup
t→+∞

I(t) ≤
τ1+τ2∫
τ1

βlim sup
t→+∞

I(t)

1 + αlim sup
t→+∞

I(t)
S1e
−µ2θdθ

and we obtain

I1 =
1

α
(R0 − 1). (30)

Then, from the first equation in (4),

dS(t)

dt
≥ [Λ− g(I1)S1]− µ1S(t)

we obtain

S1 =
1

µ1

[Λ− g(I1)S1]. (31)

Again from the third equation in (4) and by the permanence result which ensures
lim inf
t→∞

I(t) > 0, we have

lim inf
t→∞

I(t) ≥
τ1+τ2∫
τ1

βlim inf
t→∞

I(t)

1 + αlim inf
t→∞

I(t)
S1 e

−µ2θdθ

from which we obtain

I1 =
1

α

(
S1

S1

R0 − 1

)
. (32)

Again, from the first equation in (4),

dS(t)

dt
≤ [Λ− g(I1)S1]− µ1S(t)

we obtain

S2 =
1

µ1

[Λ− g(I1)S1]. (33)

Of course, from the last equation in (3) we get
lim sup
t→+∞

R(t) ≤ 1

µ3

[e−µ3(τ1+τ2)g(In)Sn] = Rn

lim inf
t→+∞

R(t) ≥ 1

µ3

[e−µ3(τ1+τ2)g(In)Sn] = Rn

(34)

for n ≥ 1.
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By iterating the above procedure (29)-(34), we obtain six sequences
{
Sn
}

, {Sn},{
In
}

, {In},
{
Rn
}

and {Rn}, n ∈ N, with elements
Sn =

1

µ1

(
Λ−

βSn−1In−1

1 + αIn−1

)
, n ≥ 2,

Sn =
1

µ1

(
Λ− βSnIn

1 + αIn

)
, n ≥ 1,

(35)

where S1 is given by (29) and, for n ≥ 1,
In =

1

α

(
R0

Sn

S1

− 1

)
In =

1

α

(
R0

Sn
S1

− 1

) (36)


Rn =

1

µ3

(
e−µ3(τ1+τ2) βSnIn

1 + αIn

)
Rn =

1

µ3

(
e−µ3(τ1+τ2) βSnIn

1 + αIn

)
.

(37)

Notice that 
S1 = S1

(
1− β

αµ1

R0 − 1

R0

)
> 0

I1 =
1

α

(
S1

S1

R0 − 1

)
=

1

α
(R0 − 1)

(
1− β

αµ1

)
> 0

since R0 > 1 and β
αµ1

< 1. Furthermore we notice that if the sequence Sn is strictly

decreasing, in the sequel Sn ↓, the first in (36) implies In ↓ and by the first of (37)
Rn ↓. If Sn ↓ and In ↓, then Sn ↑ and this in turn implies In ↑ and, by the second
of (37), even Rn ↑. About the sequence

{
Sn
}
n∈N0

, by using (35) and (36), we get

the recurrence formula:

Sn+1 = S1

(
1− β

αµ1

)(
1 +

β

αµ1R0

)
+

(
β

αµ1

)2

Sn, n = 1, 2, . . . , (38)

through which

Sn+1 − Sn =

(
β

αµ1

)2

(Sn − Sn−1), n = 2, 3, . . . .

Then it is sufficient to prove that S2 − S1 < 0 to prove that Sn+1 − Sn < 0 for all
n ≥ 1. To check this, we take (38) when n = 1 to obtain

S2 = S1

(
1− β

αµ1

)(
1 +

β

αµ1R0

)
+

(
β

αµ1

)2

S1.

By the hypotheses 1− β
αµ1

> 0 and R0 > 1 we get

S2 < S1

[
1−

(
β

αµ1

)2
]

+

(
β

αµ1

)2

S1 = S1.

Thus
{
Sn
}
n∈N0

is strictly decreasing and lower bounded. Therefore there exists

lim
n→+∞

Sn and we can compute it by (38) obtaining

lim
n→+∞

Sn =
β + αµ1R0

R0(β + αµ1)

Λ

µ1

= S+.
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(Notice instead that if β
αµ1

> 1, then Sn ↑). From (36) it follows that

lim
n→+∞

In =
1

α

[
R0

S1

β + αµ1R0

R0(β + αµ1)
S1 − 1

]
=
µ1(R0 − 1)

β + αµ1

= I+.

From (37) we can compute

lim
n→+∞

Sn =
1

µ1

[Λ− g(I+)S+] = S+. (39)

Therefore
S = S = S+ ⇔ lim

t→+∞
S(t) = S+. (40)

From (36) and (39) we obtain

lim
n→+∞

In =
1

α

(
S+

S1

R0 − 1

)
= I+. (41)

Therefore
I = I = I+ ⇔ lim

t→+∞
I(t) = I+. (42)

Now, from (37) and thanks to (40) and (42) we can easily prove

R = R = R+ =
1

µ3

[e−µ3(τ1+τ2)g(I+)S+]⇔ lim
t→+∞

R(t) = R+. (43)

Finally, from the second equation in (4) and by Lemmas 4.1 and 4.2 we get

lim inf
t→+∞

E(t) ≥
τ1∫
0

g(lim inf
t→+∞

I(t− θ))lim inf
t→+∞

S(t− θ)e−µ2θdθ

=
1

µ2

g(I+)S+(1− e−µ2τ1)

= E+

and, similarly,

lim sup
t→+∞

E(t) ≤ 1

µ2

g(I+)S+(1− e−µ2τ1) = E+.

Therefore
E = E = E+ ⇔ lim

t→+∞
E(t) = E+,

completing the proof together with (40), (42) and (43)

6. Conclusions. As already pointed out in the Introduction, though the model
equations (3) are delay differential equations with delay dependent parameters, the
delays just influence the existence delay domain Ω+ of the positive equilibrium E+,
but are harmless to induce stability switches for example from asymptotic stability
to instability within Ω+ (Theorem 2.8).

We think that the limitation in Theorem 2.6 to the global attractivity of E+

is only a technical result of the approach followed and that, perhaps, a different
approach to the global asymptotic stability of E+ by Lyapunov functionals should
be possible.

As far as the DFE equilibrium E0 is concerned, we see that all the classical results
of the epidemic models hold true. If the basic reproduction number satisfies R0 ≤ 1
then E0 is globally attractive (Theorem 2.4) and also locally asymptotically stable
if R0 < 1 (Corollary 2), whereas if R0 > 1 then E0 becomes unstable (Theorem
2.5).

The epidemic model could also be improved for two aspects:
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• by generalizing the infection rate, for example according to [7];
• by allowing the removed people to be reinfected, for example with a delay,

thus generalizing the SEIRS model in [12].

However, this is left as a future work.

Appendix A. Appendix to Section 4. Assume t ∈ Σn = [nτ1, (n+ 1)τ1] for all
n ∈ N0. Then t + u ∈ Ωn where Ωn = [(n − 1)τ1 − τ2, nτ1]. For example assume
that τ2 is such that 2τ1 < τ2 ≤ 3τ1. Then we have

Ω0 = [−(τ1 + τ2), 0] (44)

and
Ω1 = [−τ2, τ1] = [−τ2, 0] ∪ [0, τ1] ⊂ Ω0 ∪ Σ0

which are true for any value of τ2, whereas according to (44)

Ω2 = [τ1 − τ2, 2τ1] = [τ1 − τ2, 0] ∪ [0, τ1] ∪ [τ1, 2τ1] ⊂ Ω0 ∪ Σ0 ∪ Σ1,

Ω3 = [2τ1−τ2, 3τ1] = [2τ1−τ2, 0]∪ [0, τ1]∪ [τ1, 2τ1]∪ [2τ1, 3τ1] ⊂ Ω0∪Σ0∪Σ1∪Σ2

and, in general, for all n ≥ 4

Ωn = [(n− 1)τ1 − τ2, (n− 3)τ1] ∪ [(n− 3)τ1, (n− 2)τ1] ∪ [(n− 2)τ1, (n− 1)τ1]
∪[(n− 1)τ1, nτ1] ⊆ Σn−4 ∪ Σn−3 ∪ Σn−2 ∪ Σn−1

where Ωn ∩ Σn−k 6= φ, k = 1, 2, 3, 4.
Then, according to (24), the sequence of lower bounds {εn} for I(t) on Σn will

be
εI

ε0 =
g (εI)

β
Φ(R0)

ε1 =
1

β
g(min {εI , ε0})Φ(R0)

ε2 =
1

β
g(min {εI , ε0, ε1})Φ(R0)

ε3 =
1

β
g(min {εI , ε0, ε1, ε2})Φ(R0)

· · ·
εn =

1

β
g(min {εn−1,εn−2, . . . , εn−4})Φ(R0), n ≥ 4.

(45)

Now assume

(i) εI ≤ ε0 ⇔ εI ≤ εc. Then (45) implies:

εI ≤ ε0 = ε1 = ε2 = ε3

≤ ε4 =
1

β
g(min {ε3,ε2, ε1, ε0})Φ(R0) ≤ · · ·

≤ εn, n ≥ 4,

i.e. the sequence {εn}n∈N0
is non-decreasing;

(ii) εI > ε0 ⇔ εI > εc. Then (45) implies:

εI > ε0 > ε1 = 1
β g(ε0)Φ(R0) > ε2 = 1

β g(ε1)Φ(R0) > · · ·

> εn =
1

β
g(εn−1)Φ(R0), n ≥ 4,

i.e. the sequence {εn}n∈N0
is strictly decreasing.

Of course, this kind of arguments can be applied and hold true for any positive
value of τ2.
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