Inhomogeneities in 3 dimensional oscillatory media

  • Received: 01 January 2014 Revised: 01 December 2014
  • Primary: 35B36, 35Q56; Secondary: 46E35.

  • We consider localized perturbations to spatially homogeneous oscillations in dimension 3 using the complex Ginzburg-Landau equation as a prototype. In particular, we will focus on inhomogeneities that locally change the phase of the oscillations. In the usual translation invariant spaces and at $ \epsilon=0$ the linearization about these spatially homogeneous solutions result in an operator with zero eigenvalue embedded in the essential spectrum. In contrast, we show that when considered as an operator between Kondratiev spaces, the linearization is a Fredholm operator. These spaces consist of functions with algebraical localization that increases with each derivative. We use this result to construct solutions close to the equilibrium via the Implicit Function Theorem and derive asymptotics for wavenumbers in the far field.

    Citation: Gabriela Jaramillo. Inhomogeneities in 3 dimensional oscillatory media[J]. Networks and Heterogeneous Media, 2015, 10(2): 387-399. doi: 10.3934/nhm.2015.10.387

    Related Papers:

    [1] Gabriela Jaramillo . Inhomogeneities in 3 dimensional oscillatory media. Networks and Heterogeneous Media, 2015, 10(2): 387-399. doi: 10.3934/nhm.2015.10.387
    [2] Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip . Renormalized Ginzburg-Landau energy and location of near boundary vortices. Networks and Heterogeneous Media, 2012, 7(1): 179-196. doi: 10.3934/nhm.2012.7.179
    [3] Leonid Berlyand, Petru Mironescu . Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3(3): 461-487. doi: 10.3934/nhm.2008.3.461
    [4] Mickaël Dos Santos, Oleksandr Misiats . Ginzburg-Landau model with small pinning domains. Networks and Heterogeneous Media, 2011, 6(4): 715-753. doi: 10.3934/nhm.2011.6.715
    [5] Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115
    [6] Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory . An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6(3): 401-423. doi: 10.3934/nhm.2011.6.401
    [7] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009
    [8] M. Berezhnyi, L. Berlyand, Evgen Khruslov . The homogenized model of small oscillations of complex fluids. Networks and Heterogeneous Media, 2008, 3(4): 831-862. doi: 10.3934/nhm.2008.3.831
    [9] Thomas Abballe, Grégoire Allaire, Éli Laucoin, Philippe Montarnal . Application of a coupled FV/FE multiscale method to cement media. Networks and Heterogeneous Media, 2010, 5(3): 603-615. doi: 10.3934/nhm.2010.5.603
    [10] Mahmoud Saleh, Endre Kovács, Nagaraja Kallur . Adaptive step size controllers based on Runge-Kutta and linear-neighbor methods for solving the non-stationary heat conduction equation. Networks and Heterogeneous Media, 2023, 18(3): 1059-1082. doi: 10.3934/nhm.2023046
  • We consider localized perturbations to spatially homogeneous oscillations in dimension 3 using the complex Ginzburg-Landau equation as a prototype. In particular, we will focus on inhomogeneities that locally change the phase of the oscillations. In the usual translation invariant spaces and at $ \epsilon=0$ the linearization about these spatially homogeneous solutions result in an operator with zero eigenvalue embedded in the essential spectrum. In contrast, we show that when considered as an operator between Kondratiev spaces, the linearization is a Fredholm operator. These spaces consist of functions with algebraical localization that increases with each derivative. We use this result to construct solutions close to the equilibrium via the Implicit Function Theorem and derive asymptotics for wavenumbers in the far field.


    [1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition, Pure and Applied Mathematics, 140, Elsevier/Academic Press, Amsterdam, 2003.
    [2] I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation, Reviews of Modern Physics, 74 (2002), 99-143. doi: 10.1103/RevModPhys.74.99
    [3] G. Jaramillo and A. Scheel, Deformation of striped patterns by inhomogeneities, Mathematical Methods in the Applied Sciences, 38 (2015), 51-65. doi: 10.1002/mma.3049
    [4] 2003.
    [5] A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff pdes, SIAM Journal on Scientific Computing, 26 (2005), 1214-1233. doi: 10.1137/S1064827502410633
    [6] R. Kollár and A. Scheel, Coherent structures generated by inhomogeneities in oscillatory media, SIAM J. Appl. Dyn. Syst., 6 (2007), 236-262. doi: 10.1137/060666950
    [7] V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov Mat. Obšč., 16 (1967), 209-292.
    [8] R. B. Lockhart, Fredholm properties of a class of elliptic operators on noncompact manifolds, Duke Math. J., 48 (1981), 289-312. doi: 10.1215/S0012-7094-81-04817-1
    [9] R. B. Lockhart and R. C. McOwen, On elliptic systems in $\mathbbR^n$, Acta Math., 150 (1983), 125-135. doi: 10.1007/BF02392969
    [10] R. B. Lockhart and R. C. McOwen, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12 (1985), 409-447.
    [11] R. C. McOwen, The behavior of the laplacian on weighted Sobolev spaces, Communications on Pure and Applied Mathematics, 32 (1979), 783-795. doi: 10.1002/cpa.3160320604
    [12] A. Melcher, G. Schneider and H. Uecker, A hopf-bifurcation theorem for the vorticity formulation of the Navier-Stokes equations in $\mathbbR^3$, Communications in Partial Differential Equations, 33 (2008), 772-783. doi: 10.1080/03605300802038536
    [13] preprint, arXiv:1302.4253.
    [14] L. Nirenberg and H. F. Walker, The null spaces of elliptic partial differential operators in $\mathbbR^n$, J. Math. Anal. Appl., 42 (1973), 271-301. doi: 10.1016/0022-247X(73)90138-8
    [15] M. Specovius-Neugebauer and W. Wendland, Exterior stokes problems and decay at infinity, Mathematical Methods in the Applied Sciences, 8 (1986), 351-367. doi: 10.1002/mma.1670080124
    [16] M. Stich and A. S. Mikhailov, Target patterns in two-dimensional heterogeneous oscillatory reaction-diffusion systems, Physica D: Nonlinear Phenomena, 215 (2006), 38-45. doi: 10.1016/j.physd.2006.01.011
  • This article has been cited by:

    1. Rafael Monteiro, Natsuhiko Yoshinaga, The Swift–Hohenberg Equation under Directional-Quenching: Finding Heteroclinic Connections Using Spatial and Spectral Decompositions, 2020, 235, 0003-9527, 405, 10.1007/s00205-019-01427-z
    2. Gabriela Jaramillo, Arnd Scheel, Pacemakers in large arrays of oscillators with nonlocal coupling, 2016, 260, 00220396, 2060, 10.1016/j.jde.2015.09.054
    3. Gabriela Jaramillo, Shankar C Venkataramani, Target patterns in a 2D array of oscillators with nonlocal coupling, 2018, 31, 0951-7715, 4162, 10.1088/1361-6544/aac9a6
    4. Gabriela Jaramillo, Rotating spirals in oscillatory media with nonlocal interactions and their normal form, 2022, 15, 1937-1632, 2513, 10.3934/dcdss.2022085
    5. Gabriela Jaramillo, Can large inhomogeneities generate target patterns?, 2023, 74, 0044-2275, 10.1007/s00033-023-02027-4
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3636) PDF downloads(54) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog