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Abstract. We consider localized perturbations to spatially homogeneous os-

cillations in dimension 3 using the complex Ginzburg-Landau equation as a
prototype. In particular, we will focus on inhomogeneities that locally change

the phase of the oscillations. In the usual translation invariant spaces and at
ε = 0 the linearization about these spatially homogeneous solutions result in an

operator with zero eigenvalue embedded in the essential spectrum. In contrast,

we show that when considered as an operator between Kondratiev spaces, the
linearization is a Fredholm operator. These spaces consist of functions with al-

gebraical localization that increases with each derivative. We use this result to

construct solutions close to the equilibrium via the Implicit Function Theorem
and derive asymptotics for wavenumbers in the far field.

1. Introduction. This paper is concerned with the effects of inhomogeneities in
oscillatory media. As a prototype we study the complex Ginzburg-Landau equation,

At = (1 + iα)∆A+A− (1 + iγ)A|A|2, (1)

which is known to approximate the phase and amplitude of modulation patterns in
reaction diffusion systems near a supercritical Hopf bifurcation [2]. Stationary in
time inhomogeneities which produce a localized change in the phase of oscillations
in such a system can be well modeled by the inclusion of a term iεg(x)A in (1). The
effects of such inhomogeneities can vary dramatically depending on the sign of ε and
the space dimension. This has been explored formally in the phase-diffusion approx-
imation in [16], and for general reaction-diffusion equations and radially symmetric
inhomogeneities in [6]. Most notably, inhomogeneities can create wave sources in
space dimension 1 and 2. In dimension 3 and radial geometry it was shown in [6]
that sources are weak, that is, wavenumbers decay in the far field. In this note, we
establish a similar result without the assumption of radial symmetry and without
relying on spatial dynamics. In addition, we relax the assumption of spatial decay
of g(x).
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To accomplish this task we hope to use the Implicit Function Theorem to find
approximations near a spatially homogeneous solution to the complex Ginzburg-
Landau equation. As we will see, the linearization about these steady solutions
results in an operator which is not Fredholm in the usual translation invariant
Sobolev spaces. This is a consequence of zero belonging to the essential spectrum,
which in some instances can be taken care of by working in exponentially localized
spaces. However, since we will be considering algebraically localized inhomogeneities
these spaces do not provide the appropriate framework, the use of exponential
weights would turn the linearization into a semi-Fredholm operator with infinite
dimensional cokernel. Instead, we will use an approach based on functional analysis
and try to recover Fredholm properties of the linearization using Kondratiev spaces
and the results from [11], where it was shown that the Laplacian is a Fredholm
operator.

In addition to Kondratiev spaces, our method relies on weighted Sobolev space.
We will see that for certain weights of the form (1 + |x|2)δ/2 the linearization about
steady solutions possesses a cokernel. We will therefore consider an Ansatz which
adds far field corrections and obtain as a result an invertible operator. This approach
works well for weights with δ < 1/2, however for δ > 1/2 these correction terms
prove to be problematic since they result in nonlinearities which are not well defined,
i.e. they do no belong to the correct weighted space. The same is true in the 2
dimensional case for all weights that account for decaying inhomogeneities. We hope
to address these issues in the future and restrict ourselves in the present paper to
the 3 dimensional case with δ < 1/2. This will provide a straight forward example
where the advantage of viewing the linearization in the setting of Kondratiev spaces
can be appreciated without the extra complications coming form the nonlinearity.

We begin the analysis by considering the spatially homogeneous solution A∗(t) =
e−iγt of equation (1) and looking for approximations of the form A(x, t) = (1 −
s(x))e−i(γt−φ(x)). In Section 3 we will show, using Lyapunov-Schimdt reduction,
that in dimension 3 it is possible to find solutions near A∗. The asymptotics for
the function φ(x) will show that in the far field the wavenumber k ∼ ∇φ decays to
zero and hence target patterns will not form. We state this result in the following
Theorem:

Theorem 1.1. Suppose δ ∈ (−1/2, 1/2), g ∈ L2
δ+2, and 1 + αγ > 0. Then, there

exist ε0 > 0 and smooth functions S(x, ε) and Φ(x, t; ε) such that

A(x, t; ε) = S(x, ε)eΦ(x,t;ε)

is a family of solutions to (1) near A = e−iγt for all ε ∈ (−ε0, ε0). Furthermore, for
fixed ε ∈ (−ε0, ε0) and t, the functions S(x; ε) and Φ(x, t; ε) satisfy the following
asymptotics in x,

|S(x, ε)− 1| ≤C|x|−(δ+2.5),

Φ(x, t; ε) =− iγt+ i
c(ε)

|x|
(1 + o1(1/|x|)) ,

as |x| → ∞, where c(ε) is a smooth function satisfying the expansion c(ε) = εc1 +
O(ε2). In particular,

c1 =
1

4π(1 + αγ)

∫
g dx.

Remark 1. 1. Notice that we do not have asymptotic predictions for the am-
plitude, just an upper bound on the rate of its decay.
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2. The values of δ are related to the choice of spaces we make. In the case of
δ ∈ (−1/2, 1/2) our analysis shows that the linearization about the steady
solution A = e−iγ is a Fredholm operator of index i = −1. If we consider
weights with δ ∈ (1/2 + m, 1/2 + 2m), for m ∈ N, the linearization is again
a Fredholm operator, but now with a larger co-kernel consisting of harmonic
polynomials of degree m − 1. In this case, it seems reasonable to add to
the Ansatz a series of correction terms which would span the cokernel of our
linearization. In particular, these terms should consist of derivatives of the
fundamental solution 1

|x| of all degrees up to m − 1. The difficulty in this

case is that this type of Ansatz results in a non-linear operator which is not
well defined in L2

δ+2 (see Proposition 3). Nonetheless, because L2
α ⊂ L2

β for
β < α, if we consider a very localized inhomogeneity we can always assume it
is in a space L2

δ+2 with −1/2 < δ < 1/2. In other words, Theorem 1.1 holds

for g ∈ L2
σ with σ > 3/2, and in this case we take δ = 1/2 for the bounds

of |S(x, ε) − 1|. However, for these values of σ it is still an open problem to
determine if this bound is sharp.

3. In the case of δ ∈ (−3/2,−1/2), we can consider spaces which yield an invert-
ible linearization. Our analysis then shows that the amplitude S(x, ε) should
obey the same decay as stated in Theorem 1.1, but we do not expect phase
decay at order O(1/|x|). In fact, the coefficient of the leading order term,∫
gdx, is not necessarily defined when g is in L2

δ+2, δ < −1/2. Our result

would only give decay associated with the function space M2,2
δ (see Lemma

3.2).
4. Finally, we just point out that we are not interested in studying inhomo-

geneities with slow decay, g ∼ |x|−αα < 1, or that grow algebraically, and so
we do not look at the case when δ < −3/2.

The predictions of Theorem 1.1 agree with the results found in [6], where the
authors show that in the more general case of reaction diffusion equations and
in dimensions 3 and higher, there exists only contact defects (the wave number
k ∼ ∇φ→ 0 in the far field) and obtain asymptotics for the wavenumber k,

k(r, ε) =
Mε

rn−1
(ĉ+ O1/r(1)),

where the notation Oy(1) means that these terms go to zero as y → 0. This
implies that for large values of |x| and fixed ε we do not see a pace maker effect.
Nonetheless, if we fix |x| large we can approximate the group velocity, cg, for the
family of solutions A(x, t; ε) in terms of ε:

cg(ε) = 2(α− γ)k ∼ −2(α− γ)
εc1
|x|2

.

In particular, if ε(γ − α)
∫
g > 0 then cg > 0 and we obtain weak wave sources.

These results were confirmed in numerical simulations with a cubic domain of length
l = 40, parameter values α = 1, γ = 5, and with the following inhomogeneity

g(x, y, z) =
1

(1 + 1/4(x− 10)2 + 2(y − 10)2 + (z − 10)2)3.2/2
,

(see figure 1). All simulations were done with an exponential time differencing
algorithm (ETDRK4) following the methods found in [4, 5].
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Figure 1. Plot of the phase vs. x-axis for the cross section y = z =
0. For the parameter values used in the simulation the expression
(α − γ) < 0. As a result, a negative phase gradient as |x| →
∞ indicates a positive group velocity, whereas a positive phase
gradient as |x| → ∞ indicates a negative group velocity.

This paper is organized as follows: In Section 2, we define weighted Sobolev
spaces and Kondratiev spaces and state Fredholm properties for the Laplace oper-
ator. Next, in Section 3 we give a proof of our main result and finally, in Section 4,
we present numerical simulations of our results. In particular, we show the decay
rates for the amplitude and phase agree with our predictions.

2. Weighted and Kondratiev spaces.

2.1. Weighted spaces. In this paper we consider the weight 〈x〉 = (1 + |x|2)1/2

and define the weighted Sobolev spaces, W k,p
δ , as the completion of C∞0 (Rn) under

the norm

‖u‖Wk,p
δ

=

∑
|α|≤k

‖Dαu · 〈x〉δ‖pLp

1/p

,

with 1 < p < ∞, δ ∈ R and k ∈ N. Notice that we have inclusions of the form

W k.p
β ⊂W k,p

α for any real numbers α, β such that α < β. Furthermore, we have the

following proposition which was proven in [3].

Proposition 1. The operator ∆− a : W 2,p
δ → Lpδ is invertible for all real numbers

a > 0 and p ∈ (1,∞).

The above proposition also shows why the Laplace operator does not have closed
range when considered in the setting of weighted Sobolev spaces: just as in the case
of ∆ : H2 → L2, we can construct Weyl’s sequences for the Laplace operator proving
that zero is in the essential spectrum. We summarize this results as a lemma:

Lemma 2.1. The operator ∆δ : W 2,p
δ → Lpδ is not a Fredholm operator for p ∈

(1,∞).
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2.2. Kondratiev spaces. A slight variation of the above spaces are Kondratiev
spaces, where the exponent in the weight 〈x〉 is increased by one every time we take

a derivate. We denote them here by Mk,p
δ , and defined them as the completion of

C∞0 (Rn) under the norm

‖u‖Mk,p
δ

=

∑
|α|≤k

‖Dαu · 〈x〉δ+|α|‖pLp

1/p

.

Again we let 1 < p <∞, δ ∈ R, and k ∈ N.
In general, Kondratiev spaces are studied in connection with boundary value

problems for elliptic equations in domains with critical points [7]. They also appear
in the setting of unbounded domains. For example, Nirenberg and Walker showed
in [14] that a class of elliptic operators with coefficients that decay sufficiently fast
at infinity have finite dimensional kernel. Additionally, McOwen and Lockhart used
this spaces to study Fredholm properties of elliptic operators and systems of elliptic
operators in non-compact manifolds [8, 9, 10]. Moreover, Kondratiev spaces have
also been used in the description of far field asymptotics for fluid problems, in
particular when studying the flow past obstacles, since they lend themselves to the
study of problems in exterior domains (see [15] for the case of R3 and [12] for an
application towards bifurcation theory). More recently, a variant of these spaces was
used in [13] to study Poisson’s equation in a one-periodic infinite strip Z = [0, 1]×R.

The main advantage for us is that in Kondratiev spaces the Laplace operator
is a Fredholm operator. These results are shown in McOwen’s paper [11] and are
summarized in the following theorem.

Theorem 2.2. Let 1 < p = q
q−1 < ∞, n ≥ 2, and δ 6= −2 + n/q + m or δ 6=

−n/p−m, for some m ∈ N. Then

∆ : M2,p
δ → Lpδ+2,

is a Fredholm operator and

1. for −n/p < δ < −2 + n/q the map is an isomorphism;
2. for −2 + n/q+m < δ < −2 + n/q+m+ 1 , m ∈ N, the map is injective with

closed range equal to

Rm =

f ∈ Lpδ+2 :

∫
f(y)H(y) = 0 for all H ∈

m⋃
j=0

Hj

 ;

3. for −n/p−m− 1 < δ < −n/p−m, m ∈ N, the map is surjective with kernel
equal to

Nm =

m⋃
j=0

Hj .

Here, Hj denote the harmonic homogeneous polynomials of degree j.
On the other hand, if δ = −n/p−m or δ = −2 +n/q+m for some m ∈ N, then

∆ does not have closed range.

3. Proof of Theorem 1.1. To facilitate the analysis we will split this section into
four parts. In Subection 3.1 we describe how we set up the problem and how we
obtain a linearization which is easier to work with. Next, in Subsection 3.2 we
state conditions that allow us to use the Implicit Function Theorem and derive
expansions for the amplitude and phase, effectively proving the results of Theorem
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1.1. Finally, in Subsections 3.3 and 3.4 we show that the linearization is invertible
and the nonlinear operator associated to our problem is well defined.

3.1. Set up. We recall here our main equation, the complex Ginzburg-Landau
equation in dimension 3,

At = (1 + iα)∆A+A− (1 + iγ)A|A|2 + iεg(x)A, (2)

where g(x) is a localized real valued function and ε is small. In what follows we
describe how we arrive at our linearization.

We pass to a corotating frame A = e−iΩtÃ, so that Ã satisfies the following
equation,

Ãt = (1 + iα)∆Ã+ (1 + iΩ)Ã− (1 + iγ)Ã|Ã|2 + iεg(x)Ã. (3)

At parameter values Ω = γ and ε = 0, the function Ã∗ = 1 is a solution to (3)
and the linearization about this constant solution is given by the following operator,
T :

T

[
s
φ

]
=

[
∆− 2 −α∆
α∆− 2γ ∆

] [
s
φ

]
.

In Fourier space T can be represented by a matrix, F(T )(k), which at k = 0 has
eigenvalues λ1 = −2, and λ2 = 0. This suggest that in order to simplify future
computations we use the following change of coordinates,

ŝ = γs, φ̂ = −γs+ φ,

so as to diagonalize F(T )(0). The resulting operator that comes from the right

hand side of the equations for ŝt and φ̂t, and which we label as F : X × R→ Y, is
given by the following two components,

F1(ŝ, φ̂) =(1− αγ)∆ŝ− 2ŝ− γα∆φ̂− (γ + ŝ)[|∇ŝ|2 + 2∇ŝ · ∇φ̂+ |∇φ̂|2]

− 2α|∇ŝ|2 − 2α∇ŝ · ∇φ̂− αŝ(∆ŝ+ ∆φ̂)− 3

γ
ŝ2 − 1

γ2
ŝ3,

(4)

F2(ŝ, φ̂) =

(
α

γ
+ αγ

)
∆ŝ+ (1 + αγ)∆φ̂+ αŝ(∆ŝ+ ∆φ̂) + 2α∇ŝ · ∇φ̂

+ (γ − α+ ŝ)
[
|∇ŝ|2 + 2∇ŝ · ∇φ̂+ |∇φ̂|2

]
+ 2α|∇ŝ|2 +

3ŝ2

γ
+
ŝ3

γ2

+
1

(γ + ŝ)

[
2|∇ŝ|2 + 2∇ŝ · ∇φ̂− ŝ2 − ŝ3

γ
− α

γ
ŝ∆ŝ

]
+ εg(x).

(5)

We now introduce the following Ansatz for equation (2)

Ã(x, t, ε) = S(x, ε)eΦ(x,t,ε), (6)

where

S(x, ε) = 1 + s(x, ε),

Φ(x, ε) = −i(γt− φ(x, ε)), with φ(x, ε) = φ̃(x, ε) + c(ε)
χ(|x|)
|x|︸ ︷︷ ︸
P

,

and χ ∈ C∞(R) is a cut-off function equal to zero near the origin and equal to 1,

for |x| > 2. This amounts to letting φ̂ = φ̃+ cP (x) in (4) and (5), and results in a
nonlinear operator which we again label as F : X ×R2 → Y. In the last section we
show that there exists spaces X and Y such that F is well defined and smooth. We
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will also look at the properties of its linearization, L : X × R → Y, in Subsection
3.3, but we explicitly write the form of this linear operator for future reference here

L

ŝφ̃
c

 =

[
(1− αγ)∆− 2 −αγ∆ −αγ∆P

(αγ + α
γ )∆ (1 + αγ)∆ (1 + αγ)∆P

]ŝφ̃
c

 .
We also clarify that in the rest of the paper we will write s instead of ŝ.

3.2. Main results: Expansions for phase φ and amplitude s. For the re-
mainder of the paper we let X = W 2,2

δ+2 ×M
2,2
δ and Y = L2

δ+2 × L2
δ+2. The next

proposition, together with the Implicit Function Theorem, show the existence of
solutions to (2).

Proposition 2. Let δ ∈ (−1/2, 1/2) and let g ∈ L2
δ+2. Then the operator F :

W 2,2
δ+2 ×M

2,2
δ × R2 → L2

δ+2 × L2
δ+2 defined by (4) and (5) and the Ansatz (6) is

smooth and its Fréchet derivative DF evaluated at (s, φ̃, c; ε) = 0, is invertible.

We leave the proof of this result for Subsection 3.3 and justify the expansions
and decay rates of S(x, ε) and Φ(x, t, ε) stated in Theorem 1.1. First, the decay
rates follow from our choice of weighted spaces and the following two lemmas.

Lemma 3.1. Let γ > −3/2. If f ∈M2,2
γ , then |f(x)| ≤ C〈x〉−γ−3/2 as |x| → ∞.

Proof. Since we define the space M2,2
γ as the completion of C∞0 under the norm

‖ · ‖M2,2
γ

, it suffices to show the result for f ∈ C∞0 . Using polar coordinates we find

that in dimension 3,∫
|f(θ,R)|2 dθ =

∫ (∫ R

∞
|fr(θ, s)| ds

)2

dθ

=

∫ (∫ R

∞
s−(γ+2)|fr(θ, s)|sγ+1s ds

)2

dθ

≤
∫ (∫ R

∞
s−2(γ+2) ds

)(∫ R

∞
s2(γ+1)|fr(θ, s)|2s2 ds

)
dθ

≤ R−2(γ+2)+1‖fr‖L2
γ+1

.

Therefore ‖f(·, R)‖L2 ≤ CR−γ−3/2. Similarly,∫
|fθ(θ,R)|2 dθ =

∫ (∫ R

∞
|fθr(θ, s)| ds

)2

dθ

=

∫ (∫ R

∞
s−(γ+3)|fθr(θ, s)|sγ+2s ds

)2

dθ

≤
∫ (∫ R

∞
s−2(γ+3) ds

)(∫ R

∞
s2(γ+2)|fθr(θ, s)|2s2 ds

)
dθ

≤ R−2(γ+3)+1‖fθr‖L2
γ+2

.

Combining these results and using the interpolation inequality from [1, Thm 5.9],

‖f(·, R)‖2∞ ≤ ‖f(·, R)‖L2‖f(·, R)‖H1 ,

shows the result of the claim.
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The next lemma can be proven in a similar manner.

Lemma 3.2. Let γ > −1/2. If f ∈W 2,2
γ , then |f(x)| ≤ C〈x〉−γ−1/2 as |x| → ∞.

Next, to show the expansion for the function c(ε) = εc1+O(ε2) stated in Theorem
1.1 we use Lyapunov-Schmidt reduction and the results of the next subsection, where
we show that the vector (0, 1)T spans the cokernel of the operator L̂ : W 2,2

δ+2×M
2,2
δ →

L2
δ+2 × L2

δ+2 defined by the first two columns of L. If we assume expansions of the

form (s, φ̃, c)(x; ε) = ε(s1, φ̃1, c1)+O(ε2), we can obtain at order O(ε) an expression
for the coefficient c1:

−
∫
g dx =

∫
(αγ +

α

γ
)∆s1 + (1 + αγ)∆φ̃1 + c1(1 + αγ)∆P dx

=− 4π(1 + αγ)c1

c1 =

∫
g dx

4π(1 + αγ)
,

where the last two equalities follow from Theorem 2.2 and the fact that∫
∆

(
χ(|x|)
|x|

)
dx = −4π.

3.3. The Linear operator. In this subsection we prove Proposition 2 by decom-
posing the linear operator L as L = [L̂,M ]. First, we use the results from Section

2 to show that the operator, L̂ : W 2,2
δ+2 ×M

2,2
δ → L2

δ+2 × L2
δ+2, defined below, is

Fredholm with index −1. Next, we show that the Ansatz (6) adds good far field

corrections so that the linearization, L : W 2,2
δ+2 ×M

2,2
δ × R → L2

δ+2 × L2
δ+2 is an

invertible operator. We define L̂ explicitly for future reference:

L̂

[
s
φ

]
=

[
(1− αγ)∆− 2 −γα∆(
γα+ α

γ

)
∆ (1 + γα)∆

] [
s
φ

]
. (7)

Lemma 3.3. Let δ ∈ (−1/2, 1/2), and 1 + γα > 0. Then the linear operator

L̂ : W 2,2
δ+2 ×M

2,2
δ → L2

δ+2 × L2
δ+2, defined by (7) is a Fredholm operator with index

i = −1 and cokernel spanned by the vector (0, 1)T .

Proof. Assume [
s
φ

]
=

[
f
g

]
. (8)

From the second component of L we obtain and equation for the variable φ,

∆φ =
g

1 + αγ
− αγ + α/γ

1 + αγ
∆s. (9)

Since 1 + αγ > 0, we can insert the above expression for ∆φ into the first line of
equation (8) and solve for s:

s = [(1 + α2)∆− 2(1 + αγ)]−1(1 + αγ)f + [(1 + α2)∆− 2(1 + αγ)]−1αγg.

Next, we use the above result in (9) and obtain the following equation for φ:

∆φ = [(1+α2)∆−2(1+αγ)]−1[(1−αγ)∆−2]g+∆[(1+α2)∆−2(1+αγ)]−1(1+αγ)f.

Our goal is to show that the right hand side is in the range of ∆ : M2,2
δ → L2

δ+2. It
is clear that the term

∆[(1 + α2)∆− 2(1 + αγ)]−1(1 + αγ)f,
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satisfies this requirement for any f ∈ L2
δ+2, given that it involves the Laplacian and

that the operator [(1 + α2)∆− 2(1 + αγ)]−1 : L2
δ+2 →W 2,2

δ+2 is bounded.
The results from Theorem 2.2 and our assumption that δ ∈ (−1/2, 1/2) require

us to show that if g has average zero, then the term

(1 + α2)∆− 2(1 + αγ)]−1[(1− αγ)∆− 2]g

also has average zero. The result follows since the operator, A : L2
δ+2 → L2

δ+2

defined by

A = [(1 + α2)∆− 2(1 + αγ)]−1[(1− αγ)∆− 2]

preserves this condition. To see this, notice that the condition
∫
g = 0 is equivalent

to ĝ(0) = 0, where ĝ denotes the Fourier transform of g. Moreover, since the Fourier
symbol of A is given by

Â(k) =
(1− αγ)|k|2 + 2

(1 + α2)|k|2 + 2(1 + αγ)
,

and 1 + αγ > 0, then F(Ag)(0) = 0 if and only if g(0) = 0. This proves the
Lemma.

Remark 2. Observe that the condition 1 + αγ > 0 is also required for spectral
stability, an indication that these methods are consistent with previous results.

Remark 3. If δ ∈ (−3/2,−1/2) the Laplace operator is invertible. A similar
argument as in Lemma 3.3 then shows that for these values of δ the operator
L̂ : W 2,2

δ+2 ×M
2,2
δ → L2

δ+2 × L2
δ+2 is invertible.

Next, consider the Ansatz:

φ = φ̃+ c
χ(|x|)
|x|︸ ︷︷ ︸
P

,

where χ ∈ C∞(R) is defined as in the introduction. With this Ansatz, the lin-

earization of F : W 2,2
δ+2 ×M

2,2
δ ×R→ L2

δ+2 × L2
δ+2 about the origin is given by the

operator, L : W 2,2
δ+2 ×M

2,2
δ × R→ L2

δ+2 × L2
δ+2,

L

sφ̃
c

 =

[
(1− αγ)∆− 2 −αγ∆ −αγ∆P

(αγ + α
γ )∆ (1 + αγ)∆ (1 + αγ)∆P

]sφ̃
c

 , (10)

which we decompose as,

L =
[
L̂ M

]
.

Here, L̂ is the same as (7) and M : R→ L2
δ+2 × L2

δ+2 is given by

Mc =

[
−αγ∆P

(1 + αγ)∆P

]
c.

It is clear that the operator M is well defined since ∆P = ∆

(
χ(|x|)
|x|

)
has compact

support. Notice as well that∫
R3

∆

(
χ(|x|)
|x|

)
dx = −4π,
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so that the range of M and the cokernel of L intersect. The Bordering lemma for
Fredholm operators then shows that for δ ∈ (−1/2, 1/2), the operator L : W 2,2

δ+2 ×
M2,2
δ × R→ L2

δ+2 × L2
δ+2 is invertible. This proves the following result.

Lemma 3.4. Let δ ∈ (−1/2, 1/2) and 1 + αγ > 0. Then the operator L : W 2,2
δ+2 ×

M2,2
δ × R→ L2

δ+2 × L2
δ+2, defined by (10) is an invertible operator.

In order to finish the proof of Proposition 2 we just need to show that the full
operator F : W 2,2

δ+2×M
2,2
δ ×R2 → L2

δ+2×L2
δ+2 is well defined and smooth, justifying

our assertion that DF (0, 0, 0; 0) = L. This will be done in the following section.

3.4. Nonlinear terms. We now consider the full non-linear operator F : M2,2
δ ×

W 2,2
δ+2 × R2 → L2

δ+2 × L2
δ+2, given by

F1(s, φ, c) =(1− αγ)∆s− 2s− γα∆φ− (γ + s)[|∇s|2 + 2∇s · ∇φ+ |∇φ|2]

− 2α|∇s|2 − 2α∇s · ∇φ− αs(∆s+ ∆φ)− 3

γ
s2 − 1

γ2
s3,

F2(s, φ, c) =

(
α

γ
+ αγ

)
∆s+ (1 + αγ)∆φ+ αs(∆s+ ∆φ) + 2α∇s · ∇φ

+ (γ − α+ s)
[
|∇s|2 + 2∇s · ∇φ+ |∇φ|2

]
+ 2α|∇s|2 +

3s2

γ
+
s3

γ2

+
1

(γ + s)

[
2|∇s|2 + 2∇s · ∇φ− s2 − s3

γ
− α

γ
s∆s

]
+ εg(x).

We omitted the “hats” for ease of notation and use φ = φ̃+cP , with P =
χ(|x|)
|x|

.

With the help of the next lemma we show that F is well defined in the sense that
all non-linear terms are in the space Lpδ+2.

Lemma 3.5. Let δ ∈ R. If f, g ∈W 1,2
δ+1, then the product fg ∈ L2

δ+2.

Proof. This lemma is a consequence of Hölder’s inequality and the Sobolev embed-
dings.

Notice also that if δ > −2, then W 2,p
δ+2 ⊂ W 2,p. Furthermore, if p = 2 we have

W 2,2
δ+2 ⊂W 2,2 ↪→ BC(R3).

Proposition 3. Let δ ∈ (−2, 1/2), and g ∈ L2
δ+2. Then the linear operator F :

W 2,2
δ+2×M

2,2
δ ×R2 → L2

δ+2×L2
δ+2 defined by (4) and (5), is well defined and smooth.

Proof. Since δ ∈ (−2, 1/2) the results form Lemma 3.5, and the embedding W 2,2
δ+2 ⊂

BC(R2) suggest that all terms which do not involve the parameter c are in the

space L2
δ+2. Since all derivatives of

χ(|x|)
|x|

are bounded, the only terms we need to

worry about come from the expression |∇φ|2. Recall here that φ = φ̃ + cP , with

P =
χ(|x|)
|x|

and φ̃ ∈M2,2
δ , so that

|∇φ|2 = |∇φ̃|2 + 2c∇φ̃ · ∇P + c2|∇P |2.

It is clear from Lemma 3.5 that the expression |∇φ̃|2 ∈ L2
δ+2. Also, because ∇P

is bounded in compact sets and behaves like 〈x〉−2 for large |x|, a straightforward
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calculation shows that ∇φ̃ · ∇P is in the desired space. Finally, since δ < 1/2 the
following integral converges∫

R3

|∇P |4〈x〉2(δ+2) dx ≤
∫ ∞

1

r2(δ+2)−8r2 dr.

Given that all non-linear terms are defined via superposition operators of algebraic
functions, they are smooth once well defined. This completes the proof.

4. Numerical results. For the numerical simulations we consider the perturbed
complex Ginzburg-Landau equation in a corotating frame,

At = (1 + i)∆A+ (1 + 5i)A− (1 + 5i)A|A|2 + iεg(x)A. (11)

The initial condition is the steady state A = 1, and we take ε = 0.5 and define the
inhomogeneity as,

g(x, y, z) = (1 + x2 + y2 + z2)−α. (12)

The domain is a cube of length l = 40 and the results are taken at time T = 500 for
different values of α. Each value of α corresponds to a region in δ−space for which
the linearization L̂ has different Fredholm properties (see Table 1). All numerical
simulations were done on Matlab using exponential time difference combined with
an order four Runge-Kutta method. The grid size used was N = 256 and time step
h = 1. For more details on the code see [4, 5].

Operator L̂ is Invertible Fredholm index -1 Fredholm index -3

δ-range −3/2 < δ < −1/2 −1/2 < δ < 1/2 1/2 < δ <∞
α 1.2 1.3 1.4 1.5 1.6 1.8 2 2.2 2.4

mφ -0.608 0.736 -0.708 -0.806 -0.949 -1.029 -1.066 -1.046 -1.06

Table 1. The inhomogeneity, g, is in L2
δ+2 if 2α > 3/2 + (δ +

2). The constant mφ represents the decay rates for the phase
(Φ(x, ε, t) ∼ |x|mφ) found in the numerical simulations (see figures
at the end of Section 4).

Table 1 illustrates for which values of δ our results are valid. We are not inter-
ested in inhomogeneities with α < 1, since in this case our solutions blow up. For
inhomogeneities with 1 < α ≤ 1.5 we can pick δ ∈ (−3/2,−1/2). The result is that
the linearization L is invertible and in this case we do not have far field corrections.
Consequently, we cannot make predictions on the asymptotic decay of the phase,
but we can say that the phase φ, viewed as a function of space alone, should satisfy
the same properties as a function in M2,2

δ , i.e. |φ(x)| < C〈x〉−δ−3/2 (see Lemma
3.1). On the other hand, for inhomogeneities with α > 1.4, the numerical results
confirm that the phase decays at order O(1/|x|).

We conclude this short section with some plots (Figures 2 and 3) that illustrate
the results of Table 1. Figure 2 depict the phase of solutions to (11) at the cross
section z = y = 0 and for different values of α, and Figure 3 depicts the amplitude
of solutions for these same values. Notice that this las figure shows that the bounds
for the amplitude in Theorem 1.1 are satisfied though not sharp, so that finding an
asymptotic expansion for this quantity is still an open problem.
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Figure 2. Plot of φ vs. x and lnφ vs. ln |x| at the cross section
z = 0, y = 0 for values of α = 1.4, 1.8 and α = 2.2
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Figure 3. Plot of |A| − 1 vs. x at the cross section z = 0, y = 0
for values of α = 1.4, 1.8 and α = 2.2
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