Research article

RETRACTED ARTICLE: Decay estimates for the wave equation with partial boundary memory damping


  • Retraction published on 27 December 2024, see NHM 2024, 19(4), 1470.
     
  • Received: 31 August 2024 Revised: 22 November 2024 Accepted: 29 November 2024 Published: 10 December 2024
  • In this paper, we discuss the wave equation with boundary memory damping. Notably, the system only involves the partial boundary memory damping, with no other types of damping (such as frictional damping) applied to the boundaries or the interior. Previous research on such boundary damping problems has focused on boundary friction damping terms or internal damping terms. By using the properties of positive definite kernels, high-order energy methods, and multiplier techniques, we demonstrate that the integrability of system energy is achieved if the kernel function is monotonically integrable, which indicates that the solution energy decays at a rate of at least $ t^{-1} $. This finding reveals that partial boundary memory damping alone is sufficient to generate a complete decay mechanism without additional, thereby improving upon related results.

    Citation: Kun-Peng Jin, Can Liu. RETRACTED ARTICLE: Decay estimates for the wave equation with partial boundary memory damping[J]. Networks and Heterogeneous Media, 2024, 19(3): 1402-1423. doi: 10.3934/nhm.2024060

    Related Papers:

  • In this paper, we discuss the wave equation with boundary memory damping. Notably, the system only involves the partial boundary memory damping, with no other types of damping (such as frictional damping) applied to the boundaries or the interior. Previous research on such boundary damping problems has focused on boundary friction damping terms or internal damping terms. By using the properties of positive definite kernels, high-order energy methods, and multiplier techniques, we demonstrate that the integrability of system energy is achieved if the kernel function is monotonically integrable, which indicates that the solution energy decays at a rate of at least $ t^{-1} $. This finding reveals that partial boundary memory damping alone is sufficient to generate a complete decay mechanism without additional, thereby improving upon related results.



    加载中


    [1] R. Buffe, Stabilization of the wave equation with Ventcel boundary condition, J. Math. Pures Appl., 108 (2017), 207–259. https://doi.org/10.1016/j.matpur.2016.11.001 doi: 10.1016/j.matpur.2016.11.001
    [2] C. L. Frota, A. Vicente, Uniform stabilization of wave equation with localized internal damping and acoustic boundary condition with viscoelastic damping, Z. Angew. Math. Phys., 69 (2018), 85. https://doi.org/10.1007/s00033-018-0977-y doi: 10.1007/s00033-018-0977-y
    [3] J. Hao, M. Lv, Stability of wave equation with locally viscoelastic damping and nonlinear boundary source, J. Math. Anal. Appl., 490 (2020), 12430. https://doi.org/10.1016/j.jmaa.2020.124230 doi: 10.1016/j.jmaa.2020.124230
    [4] K. P. Jin, L. Wang, Uniform decay estimates for the semi-linear wave equation with locally distributed mixed-type damping via arbitrary local viscoelastic versus frictional dissipative effects, Adv. Nonlinear Anal., 12 (2023), 20220285. https://doi.org/10.1515/anona-2022-0285 doi: 10.1515/anona-2022-0285
    [5] M. I. Mustafa, S. A. Messaoudi, Energy decay rates for a Timoshenko system with viscoelastic boundary conditions, Appl. Math. Comput., 218 (2012), 9125–9131. https://doi.org/10.1016/j.amc.2012.02.065 doi: 10.1016/j.amc.2012.02.065
    [6] M. I. Mustafa, G. A. Abusharkh, Plate equations with viscoelastic boundary damping, Indagationes Math., 26 (2015), 307–323. https://doi.org/10.1016/j.indag.2014.09.005 doi: 10.1016/j.indag.2014.09.005
    [7] S. Pal, R. Haloi, Existence and uniqueness of solutions to the damped Naviera Stokes equations with Navier boundary conditions for three dimensional incompressible fluid, J. Appl. Math. Comput., 66 (2021), 307–325. https://doi.org/10.1007/s12190-020-01437-1 doi: 10.1007/s12190-020-01437-1
    [8] E. Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and source, J. Differ. Equations, 265 (2018), 4873–4941. https://doi.org/10.1016/j.jde.2018.06.022 doi: 10.1016/j.jde.2018.06.022
    [9] H. Yassine, Existence and asymptotic behavior of solutions to semilinear wave equations with nonlinear damping and dynamical boundary condition, J. Dyn. Differ. Equations, 24 (2012), 645–661. https://doi.org/10.1007/s10884-012-9258-1 doi: 10.1007/s10884-012-9258-1
    [10] P. Lv, The asymptotic behaviors of solutions for higher-order (m1, m2)-coupled Kirchhoff models with nonlinear strong damping, Dem. Math., 56 (2023), 20220197. https://doi.org/10.1515/dema-2022-0197 doi: 10.1515/dema-2022-0197
    [11] B. Samet, C. Vetro, A perturbed Cauchy viscoelastic problem in an exterior domain, Mathematics, 10 (2023), 2283. https://doi.org/10.3390/math11102283 doi: 10.3390/math11102283
    [12] O. P. V. Villagran, Stability for a weakly coupled wave equations with a boundary dissipation of fractional derivative type, Rend. Circ. Mat. Palermo, 72 (2023), 803–831. https://doi.org/10.1007/s12215-021-00703-w doi: 10.1007/s12215-021-00703-w
    [13] Z. Y. Zhang, J. H. Huang, On solvability of the dissipative Kirchhoff equation with nonlinear boundary damping, Bull. Korean Math. Soc., 51 (2014), 189–206. http://dx.doi.org/10.4134/BKMS.2014.51.1.189 doi: 10.4134/BKMS.2014.51.1.189
    [14] Z. Y. Zhang, Z. H. Liu, Y. J. Deng, J. H. Huang, C. X. Huang, Long time behavior of solutions to the damped forced generalized Ostrovsky equation below the energy space, Proc. Am. Math. Soc., 149 (2021), 1527–1542. https://doi.org/10.1090/proc/15322 doi: 10.1090/proc/15322
    [15] Z. Y. Zhang, Z. H. Liu, X. J. Miao, Y. Z. Chen, Global existence and uniform stabilization of a generalized dissipative Klein–Gordon equation type with boundary damping, J. Math. Phys., 52 (2011), 023502. https://doi.org/10.1063/1.3544046 doi: 10.1063/1.3544046
    [16] Z. Y. Zhang, X. J. Miao, Global existence and uniform decay for wave equation with dissipative term and boundary damping, Comput. Math. Appl., 59 (2010), 1003–1018. https://doi.org/10.1016/j.camwa.2009.09.008 doi: 10.1016/j.camwa.2009.09.008
    [17] Z. Y. Zhang, Q. C. Ouyang, Global existence, blow–up and optimal decay for a nonlinear viscoelastic equation with nonlinear damping and source term, Discrete Contin. Dyn. Syst. Ser. B, 29 (2023), 4735–4760. https://doi.org/10.3934/dcdsb.2023038 doi: 10.3934/dcdsb.2023038
    [18] T. G. Ha, Asymptotic stability of the semilinear wave equation with boundary damping and source term, C.R. Math., 352 (2014), 213–218. https://doi.org/10.1016/j.crma.2014.01.005 doi: 10.1016/j.crma.2014.01.005
    [19] M. M. Cavalcanti, V. N. D. Cavalcanti, P. Martinezb, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differ. Equations, 203 (2004), 119–158. https://doi.org/10.1016/j.jde.2004.04.011 doi: 10.1016/j.jde.2004.04.011
    [20] M. M. Cavalcanti, V. N. D. Cavalcanti, I. Lasiecka, Well–posedness and optimal decay rates for the wave equation with nonlinear boundary damping–source interaction, J. Differ. Equations, 236 (2007), 407–459. https://doi.org/10.1016/j.jde.2007.02.004 doi: 10.1016/j.jde.2007.02.004
    [21] M. M. Cavalcanti, A. Khemmoudj, M. Medjden, Uniform stabilization of the damped Cauchya Ventcel problem with variable coefficients and dynamic boundary conditions, J. Math. Anal. Appl., 328 (2007), 900–930. https://doi.org/10.1016/j.jmaa.2006.05.070 doi: 10.1016/j.jmaa.2006.05.070
    [22] W. Desch, E. Fasangova, J. Milota, G. Propst, Stabilization through viscoelastic boundary damping: A semigroup approach, Semigroup Forum, 80 (2010), 405–415. https://doi.org/10.1007/s00233-009-9197-2 doi: 10.1007/s00233-009-9197-2
    [23] S. Gerbi, B. Said-Houari, Existence and exponential stability of a damped wave equation with dynamic boundary conditions and a delay term, Appl. Math. Comput., 218 (2012), 11900–11910. https://doi.org/10.1016/j.amc.2012.05.055 doi: 10.1016/j.amc.2012.05.055
    [24] P. J. Graber, B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions, Appl. Math. Optim., 66 (2012), 81–122. https://doi.org/10.1007/s00245-012-9165-1 doi: 10.1007/s00245-012-9165-1
    [25] J. Y. Park, T. G. Ha, Y. H. Kang, Energy decay rates for solutions of the wave equation with boundary damping and source term, Z. Angew. Math. Phys., 61 (2010), 235–265. https://doi.org/10.1007/s00033-009-0009-z doi: 10.1007/s00033-009-0009-z
    [26] E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping and source terms, J. Differ. Equations, 186 (2002), 259–298. https://doi.org/10.1016/S0022-0396(02)00023-2 doi: 10.1016/S0022-0396(02)00023-2
    [27] M. Ghader, R. Nasser, A. Wehbe, Stability results for an elastica viscoelastic wave equation with localized Kelvina Voigt damping and with an internal or boundary time delay, Asymptotic Anal., 125 (2021), 1–57. https://doi.org/10.3233/ASY-201649 doi: 10.3233/ASY-201649
    [28] I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differ. Integr. Equations, 6 (1993), 507–533.
    [29] C. Li, J. Liang, T. J. Xiao, Dynamical behaviors of solutions to nonlinear wave equations with vanishing local damping and Wentzell boundary conditions, Z. Angew. Math. Phys., 69 (2018), 102. https://doi.org/10.1007/s00033-018-0996-8 doi: 10.1007/s00033-018-0996-8
    [30] G. M. Coclite, G. R. Goldstein, J. A. Goldstein, Stability of parabolic problems with nonlinear Wentzell boundary conditions, J. Differ. Equations, 246 (2009), 2434–2447. https://doi.org/10.1016/j.jde.2008.10.004 doi: 10.1016/j.jde.2008.10.004
    [31] C. Li, J. Liang, T. J. Xiao, Boundary stabilization for wave equations with damping only on the nonlinear Wentzell boundary, Nonlinear Anal., 164 (2017), 155–175. https://doi.org/10.1016/j.na.2017.08.010 doi: 10.1016/j.na.2017.08.010
    [32] C. Li, J. Liang, T. J. Xiao, Asymptotic behaviours of solutions for wave equations with damped Wentzell boundary conditions but no interior damping, J. Differ. Equations, 271 (2021), 76–106. https://doi.org/10.1016/j.jde.2020.08.018 doi: 10.1016/j.jde.2020.08.018
    [33] C. Li, T. J. Xiao, Asymptotics for wave equations with Wentzell boundary conditions and boundary damping, Semigroup Forum, 94 (2017), 520–531. https://doi.org/10.1007/s00233-016-9779-8 doi: 10.1007/s00233-016-9779-8
    [34] T. J. Xiao, J. Liang, Nonautonomous semilinear second order evolution equations with generalized Wentzell boundary conditions, J. Differ. Equations, 252 (2012), 3953–3971. https://doi.org/10.1016/j.jde.2011.11.007 doi: 10.1016/j.jde.2011.11.007
    [35] T. J. Xiao, J. Liang, A solution to an open problem for wave equations with generalized Wentzell boundary conditions, Math. Ann., 327 (2003), 351–363. https://doi.org/10.1007/s00208-003-0457-2 doi: 10.1007/s00208-003-0457-2
    [36] M. I. Mustafa, On the control of the wave equation by memory-type boundary condition, Discrete Contin. Dyn. Syst., 35 (2015), 1179–1192. https://doi.org/10.3934/dcds.2015.35.1179 doi: 10.3934/dcds.2015.35.1179
    [37] K. P. Jin, J. Liang, T. J. Xiao, New general decay result for a class of neutral viscoelastic equations, J. Math. Anal. Appl., 506 (2022), 125673. https://doi.org/10.1016/j.jmaa.2021.125673 doi: 10.1016/j.jmaa.2021.125673
    [38] K. P. Jin, Stability of a class of coupled systems, Abstr. Appl. Anal., 2014 (2014), 835765.
    [39] K. P. Jin, Stability for locally coupled wave-type systems with indirect mixed-type dampings, Appl. Math. Optim., 85 (2022), https://doi.org/11.10.1007/s00245-022-09830-x
    [40] K. P. Jin, J. Liang, T. J. Xiao, Uniform polynomial stability of second order integro-differential equations in hilbery spaces with positive definite kernels, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 3141–3166. https://doi.org/10.3934/dcdss.2021077 doi: 10.3934/dcdss.2021077
    [41] K. P. Jin, J. Liang, T. J. Xiao, Stability for a coupled system of second-order evolutionequations with indirect memory-damping, SIAM J. Math. Anal., 55 (2023), 7155–7188. https://doi.org/10.1137/22M1476356 doi: 10.1137/22M1476356
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(317) PDF downloads(37) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog