Research article Special Issues

The dynamics of coupled logistic maps

  • Received: 03 October 2022 Revised: 24 November 2022 Accepted: 01 December 2022 Published: 20 December 2022
  • This paper considers a coupled system given by two logistic maps with the same parameter. We studied the existence and stability of fixed points outside the diagonal and estimated the regions where the synchronization to the diagonal, both chaotic and regular, is possible. Bifurcation scenarios to illustrate the results are also given.

    Citation: J.S. Cánovas. The dynamics of coupled logistic maps[J]. Networks and Heterogeneous Media, 2023, 18(1): 275-290. doi: 10.3934/nhm.2023010

    Related Papers:

  • This paper considers a coupled system given by two logistic maps with the same parameter. We studied the existence and stability of fixed points outside the diagonal and estimated the regions where the synchronization to the diagonal, both chaotic and regular, is possible. Bifurcation scenarios to illustrate the results are also given.



    加载中


    [1] S. Agronsky, J. Ceder, What sets can be $\omega$-limit sets in $E^{n}$?, Real Anal. Exch., 17 (1991), 97–109. https://doi.org/10.2307/44152199 doi: 10.2307/44152199
    [2] P. Ashwin, J. Buescu, I. Stewart, Bubbling of attractors and synchronization of chaotic oscillators, Phys. Lett. A, 193 (1994), 126–139. https://doi.org/10.1016/0375-9601(94)90947-4 doi: 10.1016/0375-9601(94)90947-4
    [3] P. Ashwin, J. Buescu, I. Stewart, From attractor to chaotic saddle: a tale of transverse instability, Nonlinearity, 9 (1996), 703–737. https://doi.org/10.1088/0951-7715/9/3/006 doi: 10.1088/0951-7715/9/3/006
    [4] F. Balibrea, J. S. Cánovas, A. Linero, $\omega$-limit sets of antitriangular maps, Topol. Appl., 137 (2004), 13–19. https://doi.org/10.1016/S0166-8641(03)00195-0 doi: 10.1016/S0166-8641(03)00195-0
    [5] J. S. Cánovas, A. Linero Bas, G. Soler López, Chaotic synchronization in a type of coupled lattice maps, Commun Nonlinear Sci Numer Simul, 62 (2018), 418–428. https://doi.org/10.1016/j.cnsns.2018.02.022 doi: 10.1016/j.cnsns.2018.02.022
    [6] P. J. Davis, Circulant matrices, A Wiley-Interscience Publication, Pure and Applied Mathematics, New York: John Wiley & Sons, 1979.
    [7] W. de Melo, S. van Strien, One-dimensional dynamics, Berlin: Springer-Verlag, 1993.
    [8] S. N. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Boca Raton: Chapman and Hall CRC, 2007.
    [9] J. Graczyk, D. Sands, G. $\acute{S}$wiatek, Metric attractors for smooth unimodal maps, Ann. Math., 159 (2004), 725–740. https://doi.org/10.4007/annals.2004.159.725 doi: 10.4007/annals.2004.159.725
    [10] S. Isola, A. Politi, S. Ruffo, A. Torcini, Lyapunov spectra of coupled map lattices, Phys. Lett. A., 143 (1990), 365–368. https://doi.org/10.1016/0375-9601(90)90373-V doi: 10.1016/0375-9601(90)90373-V
    [11] K. Kaneko, Period-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like structures and spatial intermittency in coupled logistic lattice: Towards a prelude of a "field theory of chaos", Progr. Theor. Phys., 72 (1984), 480–486. https://doi.org/10.1143/PTP.72.480 doi: 10.1143/PTP.72.480
    [12] K. Kaneko, Globally coupled chaos violates the law of large numbers but not the central-limit theorem, Phys. Rev. Lett. 65 (1990), 1391–1394. https://doi.org/10.1103/PhysRevLett.65.1391 doi: 10.1103/PhysRevLett.65.1391
    [13] K. Kaneko, Overview of coupled map lattices, Chaos 2 (1992), 279–282. https://doi.org/10.1063/1.165869 doi: 10.1063/1.165869
    [14] M. Kopel, Simple and complex adjustment dynamics in Cournot duopoly model, Chaos, Solitons Fractals, 7 (1996), 2031–2048. https://doi.org/10.1016/S0960-0779(96)00070-7 doi: 10.1016/S0960-0779(96)00070-7
    [15] Yu. A. Kuznetsov, Numerical Analysis of Bifurcations, Elements of applied bifurcation theory, New York: Springer-Verlag, 2004.
    [16] Y. A. Kuznetsov, R. J. Sacker, Neimark-Sacker bifurcation, Scholarpedia, 3 (2008), 1845. https://doi.org/10.4249/scholarpedia.1845 doi: 10.4249/scholarpedia.1845
    [17] M. Lampart, P. Oprocha, Chaotic sub-dynamics in coupled logistic maps, Physica D., 335 (2016), 45–53. https://doi.org/10.1016/j.physd.2016.06.010 doi: 10.1016/j.physd.2016.06.010
    [18] M. Lampart, T. Martinovic, Chaotic behavior of the CML model with respect to the state and coupling parameters, J. Math. Chem., 57 (2019), 1670–1681. https://doi.org/10.1007/s10910-019-01023-2 doi: 10.1007/s10910-019-01023-2
    [19] A. Linero Bas, M. Muñoz Guillermo, A full description of $\omega$-Limit sets of cournot maps having non-empty interior and some economic applications, Mathematics, 9 (2021), 452. https://doi.org/10.3390/math9040452 doi: 10.3390/math9040452
    [20] R. Li, J. Wang, T. Lu, R. Jiang, Remark on topological entropy and $\mathcal{P}$-chaos of a coupled lattice system with non-zero coupling constant related with Belusov-Zhabotinskii reaction, J. Math. Chem., 54 (2016), 1110–1116. https://doi.org/10.1007/s10910-016-0609-8 doi: 10.1007/s10910-016-0609-8
    [21] J. Liu, T. Lu, R. Li, Topological entropy and $\mathcal{P}$-chaos of a coupled lattice system with non-zero coupling constant related with Belousov–Zhabotinsky reaction, J. Math. Chem., 53 (2015), 1220–1226. https://doi.org/10.1007/s10910-015-0482-x doi: 10.1007/s10910-015-0482-x
    [22] M. Martens, W. de Melo, S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math., 168 (1992), 273–318. https://doi.org/10.1007/BF02392981 doi: 10.1007/BF02392981
    [23] J. Milnor, On the concept of attractor, Commun. Math. Phys. 99 (1985), 177–195. https://doi.org/10.1007/BF01212280 doi: 10.1007/BF01212280
    [24] V.I. Oseledets, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197–231.
    [25] D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. App. Math., 35 (1978), 260–267. https://doi.org/10.1137/0135020 doi: 10.1137/0135020
    [26] H. Thunberg, Periodicity versus chaos in one–dimensional dynamics, SIAM Review, 43 (2001), 3–30. https://doi.org/10.1137/S0036144500376649 doi: 10.1137/S0036144500376649
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1881) PDF downloads(112) Cited by(1)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog