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1. Introduction

We consider the system of difference equations{
xn+1 = (1 − ε) fµ(xn) + ε fµ(yn),
yn+1 = ε fµ(xn) + (1 − ε) fµ(yn),

(1.1)

where ε ∈ [0, 1] is a coupling parameter and fµ(x) = µx(1 − x), µ ∈ (0, 4], x ∈ [0, 1], is the classical
logistic family widely studied [7, 25, 26]. This model was proposed and studied in [17, 18] and it is
motivated by difference equations associated to the Belousov-Zhabotinsky chemical reaction [11, 12,
20, 21]. This model is included in the family of the so-called dynamics of coupled map lattices (see
e.g. [13, 10, 5]).

This model can be seen as a convex deformation between two well-known systems. When ε = 0,
the systems reads as {

xn+1 = fµ(xn),
yn+1 = fµ(yn),

and so is the product map fµ × fµ, while if ε = 1, we have the model{
xn+1 = fµ(yn),
yn+1 = fµ(xn),
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called antitriangular [4]. This kind of map appears naturally in some economic models called duopolies
[19, 14]. In both cases, the dynamics of this model is deeply connected with that of fµ. In particular,
attractors or limit sets of the orbits have been analyzed [1], [4], [19]. From these papers, one can see
that a rectangle contained in [0, 1]2 can be an attractor or a limit set of these models and suggest a
response to the question raised in [17] about the synchronization of the model Eq (1.1). In general,
some orbits do not synchronize. We will check this by proving the existence and asymptotic stability of
fixed points out of the diagonal ∆ = {(x, x) : x ∈ [0, 1]} in Section 2 and by studying the local stability
of the diagonal utilizing Lyapunov exponents in Section 3. The paper finishes with a section in which
we study the bifurcation scenarios of the model Eq (1.1) to illustrate and complete the results of the
two previous sections.

Of course, a lot of work is left to understand these systems’ dynamics. For instance, a complete
characterization of the attractors, the existence of chaotic dynamics when simple maps fµ are consid-
ered, and how is the chaotic dynamics outside the diagonal ∆. In some sense, this paper is a partial
advance for these and other possible questions.

We organize this paper divided into the three sections mentioned above. Each section contains the
basic definitions necessary to understand the presented results.

2. Periodic points: existence and stability

Given a map f : X → X, X ⊂ Rn, n ∈ N, we denote by f 0 the identity on X, by f 1 = f , and define
inductively f n = f ◦ f n−1. The solution of the difference equation{

xn+1 = f (xn),
x0 ∈ X,

is called the orbit of x0 by f . The set of the limit points of the orbit of x0 is called the attractor or the
ω-limit set of x0 by f , denoted by ω(x0, f ). We say x ∈ X is periodic of period n ∈ N if f n(x) = x and
f i(x) , x for 1 ≤ i < n. If n = 1 we say that x is a fixed point of f . According to [8], a fixed point x0 is
said to be:

1. Locally stable if for each ε > 0 there exists a neighborhood V of x0 such that for any x ∈ V , then
|| f n(x) − x0|| < ε, for each n ∈ N.

2. Attracting if there exists a neighborhood V of x0 such that lim
n→+∞

f n(x) = x0 for each x ∈ V .
3. Locally asymptotically stable (LAS) if it is both, locally stable and attracting.
4. Furthermore, if a fixed point x0 is LAS, then |J f (x0)| ≤ 1 whenever f is differentiable and J f (x0)

denotes the Jacobian matrix.

Now, fix fµ(x) = µx(1 − x), µ ∈ (0, 4], x ∈ [0, 1]. For ε ∈ [0, 1], we define

Fε,µ(x, y) =
(
(1 − ε) fµ(x) + ε fµ(y), (1 − ε) fµ(y) + ε fµ(x)

)
defined on [0, 1]2. The diagonal set

∆ = {(x, x) : x ∈ [0, 1]}

is invariant by Fε,µ, i.e., Fε,µ(∆) ⊆ ∆ and the dynamics on this invariant set is independent on ε and
given by fµ since

(1 − ε) fµ(x) + ε fµ(x) = fµ(x).
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In addition, the map Fε,µ is symmetric with respect to ∆, that is, Fε,µ(x, y) = Fε,µ(1 − x, 1 − y) for all
x, y ∈ [0, 1].

The equation {
(1 − ε) fµ(x) + ε fµ(y) = x,
(1 − ε) fµ(y) + ε fµ(x) = y,

gives us the fixed points of Fε,µ. It is easy to see that this equation has at most four solutions Pi,
i = 1, 2, 3, 4, given by

• P1 = (0, 0).
• P2 =

(
µ−1
µ
, µ−1
µ

)
.

• P3 =

(
1+(2ε−1)µ−

√
(1+2ε(µ−2)−µ)(1+(2ε−1)µ)

2(2ε−1)µ ,
1+(2ε−1)µ+

√
(1+2ε(µ−2)−µ)(1+(2ε−1)µ)

2(2ε−1)µ

)
.

• P4 =

(
1+(2ε−1)µ+

√
(1+2ε(µ−2)−µ)(1+(2ε−1)µ)

2(2ε−1)µ ,
1+(2ε−1)µ−

√
(1+2ε(µ−2)−µ)(1+(2ε−1)µ)

2(2ε−1)µ

)
.

Clearly, P1 and P2 belong to ∆ and P2 exists and it is different from P1 if and only if µ ≤ 1. P3 and
P4 are symmetric with respect to ∆ and do exist whenever

(1 + 2ε(µ − 2) − µ)(1 + (2ε − 1)µ) ≥ 0.

Note that the equation
(1 + 2ε(µ − 2) − µ)(1 + (2ε − 1)µ) = 0

has solutions
µ =

1
1 − 2ε

(2.1)

and
µ =

4ε − 1
2ε − 1

. (2.2)

If the conditions Eq (2.1) and Eq (2.2) are fulfilled, then P3 = P4 = P2. The region where both P3 and
P4 exist and are different from P2 can be seen in Figure 1.

However, as
1 + (2ε − 1)µ ≤

√
(1 + 2ε(µ − 2) − µ)(1 + (2ε − 1)µ)

in the regions R2 and R3, the points P3 and P4 have negative coordinates except when ε = 0 and µ > 3,
where the fixed points are P3 =

(
0, µ−1

µ

)
and P4 =

(
µ−1
µ
, 0

)
. Therefore, the region where fixed points P3

and P4 exist and are different from P2 is

R = {(µ, 0) : µ ∈ (1, 4]} ∪ R1,

where

R1 =

{
(ε, µ) : µ >

4ε − 1
2ε − 1

}
⊂ [3/4, 1] × [3, 4].

The Jacobian matrix is

JFε,µ(x, y) =

 (1 − ε)∂ fµ
∂x (x) ε

∂ fµ
∂y (y)

ε
∂ fµ
∂x (x) (1 − ε)∂ fµ

∂y (y)

 .
We use it to study the local asymptotic stability of the fixed points of Fε,µ.
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Figure 1. Shaded, the regions where the fixed points P3 and P4 are different from P1 and P2.
As we will see, R1 and R2 do not contain fixed points where both coordinates are positive, so
we will focus our study on R3.

2.1. The fixed point P1

The Jacobian matrix reads as

JFε,µ (P1) = JFε,µ(0, 0) =
(
µ(1 − ε) µε

µε µ(1 − ε)

)
with eigenvalues µ and µ(1 − 2ε). As |1 − 2ε| ≤ 1, it turns out that if µ < 1, then P1 is LAS.

2.2. The fixed point P2

The Jacobian matrix reads as

JFε,µ (P2) = JFε,µ

(
µ − 1
µ
,
µ − 1
µ

)
=

(
(µ − 2)(ε − 1) (2 − µ)ε

(2 − µ)ε (µ − 2)(ε − 1)

)
with eigenvalues 2 − µ and (2 − µ)(1 − 2ε). As |1 − 2ε| ≤ 1, it turns out that if 1 < µ < 3, then P2 is
LAS.

2.3. The fixed points P3 and P4

By symmetry, the analysis for P4 is the same than that of P3. So, we will study the stability for P3.
The Jacobian matrix reads as

JFε,µ (P3) =


(1−ε)

(
1−
√

(1+2ε(µ−2)−µ)(1+(2ε−1)µ)
)

1−2ε

ε
(
1+
√

(1+2ε(µ−2)−µ)(1+(2ε−1)µ)
)

1−2ε
ε
(
1−
√

(1+2ε(µ−2)−µ)(1+(2ε−1)µ)
)

1−2ε

(1−ε)
(
1+
√

(1+2ε(µ−2)−µ)(1+(2ε−1)µ)
)

1−2ε
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with eigenvalues

λ1 =
1 − ε +

√
(1 − 3ε)2 + 2(2ε − 1)3µ − (2ε − 1)3µ2

1 − 2ε
and

λ2 =
1 − ε −

√
(1 − 3ε)2 + 2(2ε − 1)3µ − (2ε − 1)3µ2

1 − 2ε
.

These eigenvalues are real when

(1 − 3ε)2 + 2(2ε − 1)3µ − (2ε − 1)3µ2 ≥ 0.

The equation
(1 − 3ε)2 + 2(2ε − 1)3µ − (2ε − 1)3µ2 = 0

gives the solutions

µ1 = 1 −
ε
√

(2ε − 1)3(8ε − 3)
(2ε − 1)3

and

µ2 = 1 +
ε
√

(2ε − 1)3(8ε − 3)
(2ε − 1)3 .

It can be seen that µ1 < 0 while the graph of min{4, µ2} can be seen in Figure 2, jointly with the region
S such that λ1 and λ2 are real.

Figure 2. The region S is bounded by the following lines: dashed boundary curve of the
region where both points P3 and P4 do exist and thick the boundary line where the eigenvalues
of the Jacobian matrix are real.

In this case, note that λ1 ≥ λ2 and the equality holds when λ1 = λ2 =
1−ε

1−2ε . The equations

λ1 = 1 (2.3)
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and
λ2 = −1 (2.4)

are the boundaries of the region with real eigenvalues with modulus smaller than one. The solutions of
the equation Eq (2.3) are the ones of the conditions Eq (2.1) and Eq (2.2), while the solutions of the Eq
(2.4) are

µ = 1 −
2
√

(1 − 2ε)2(1 + (ε − 1)ε)
(1 − 2ε)2

µ = 1 +
2
√

(1 − 2ε)2(1 + (ε − 1)ε)
(1 − 2ε)2 .

The first solution satisfies that µ < 0. Hence, when the eigenvalues are real, the stability region is given
by the inequality

µ > µinf(ε) = 1 +
2
√

(1 − 2ε)2(1 + (ε − 1)ε)
(1 − 2ε)2 .

When the eigenvalues are complex, the border of the stability region is given by the equation∣∣∣∣∣∣∣1 − ε − i
√

(2ε − 1)3µ2 − (1 − 3ε)2 − 2(2ε − 1)3µ

1 − 2ε

∣∣∣∣∣∣∣ = 1,

which reduces to

(1 − ε)2 + (2ε − 1)3µ2 − (1 − 3ε)2 − 2(2ε − 1)3µ = (1 − 2ε)2,

with solutions

µ = 1 −

√
2
√
−ε(−1 + 2ε)3(−1 + 2ε(3 + (−5 + ε)ε))

(2ε − 1)3

µ = 1 +

√
2
√
−ε(−1 + 2ε)3(−1 + 2ε(3 + (−5 + ε)ε))

(2ε − 1)3 .

The first solution satisfies that µ < 0. Hence, when the eigenvalues are complex, the stability region is
given by the inequality

µ < µsup(ε) = 1 +

√
2
√
−ε(−1 + 2ε)3(−1 + 2ε(3 + (−5 + ε)ε))

(2ε − 1)3 .

Hence, the stability region of P3 is the set

S 3 =
{
(ε, µ) : µinf(ε) < µ < µsup(ε) < 4, ε ∈ [3/4, 1]

}
.

This region can be see in Figure 3.
Then, we can summarize the above results as follows.

Theorem 1. Let P1, P2, P3 and P4 be the fixed points of the map Fε,µ. Then:

(a) The fixed point P1 is LAS if µ < 1.
(b) The fixed point P2 is LAS if 1 < µ < 3.
(c) The fixed points P3 and P4 are LAS if either ε > 0 and (ε, µ) ∈ S 3.

Proof. The cases (a), (b) and case (c) when ε > 0 have been studied above. When ε = 0, note
that P3 and P4 cannot be LAS since the stability conditions of the map fµ to have 0 and µ−1

µ
cannot be

fulfilled simultaneously.□
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Figure 3. The region of local asymptotic stability of fixed points P3 and P4.

3. Synchronization

We say that an orbit of Fε,µ synchronizes if its attractor is contained in the diagonal line ∆. The
orbit converges therefore to an attractor of the map (1 − ε) fµ + ε fµ. Here one can identify the diagonal
∆ with the interval [0, 1]. The attractors of this kind of maps are well-known (cf. [9].). They are of the
following types:

1. a periodic orbit;
2. a finite union of pairwise disjoint subintervals I1, I2, . . . , Ik such that f k(Ii) = Ii and f k

|Ii
has a dense

orbit for i ∈ {1, . . . , k};
3. a Cantor set,

and there is at most one metric attractor of a type different from type (1).
Following [3, §2.1], see also [24], for a given v =

∑2
i=1 aivi−1 = (a1, a2)β ∈ R2 (here, we use the

subindex β to indicate that its coordinates are expressed in terms of the basis β = {(1, 1), (1−, 1)}), we
define the tangential Lyapunov exponent at x̄ in the direction of v to be

ly||(Fε,µ, (x, y), v) = lim
n→∞

1
n

log ∥Π∆ ◦ d(Fε,µ)n
(x,y) ◦ Π∆(v)∥,

where Π∆ is meant the projection of a vector of R2 in the subspace ∆ and dFn
x̄ denotes the differential of

F at x̄ = (x, y). On the other hand, again following [3, §2.1], we define the normal Lyapunov exponent
at x̄ ∈ ∆ in the direction of v to be

ly⊥(Fε,µ, (x, y), v) = lim
n→∞

1
n

log ∥Π∆⊥ ◦ d(Fε,µ)n
(x,y) ◦ Π∆⊥(v)∥.

The existence of fixed points P3 and P4 proves that the dynamics of Fε,µ when µ > µ0 = 3.5699...
need not converge to the diagonal ∆. This fact solves a question stated in [17]. In this section, we will
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explore when the synchronization of Fε,µ is possible. For that, note that the Jacobian matrix at ∆, given
by

JFε,µ(x, x) =
 (1 − ε)∂ fµ

∂x (x) ε
∂ fµ
∂x (x)

ε
∂ fµ
∂x (x) (1 − ε)∂ fµ

∂x (x)

 ,
is circulant (see [6]). Then,

JFε,µ(x, x)
(

1
1

)
=
∂ fµ
∂x

(x)
(

1
1

)
and

JFε,µ(x, x)
(

1
−1

)
= (1 − 2ε)

∂ fµ
∂x

(x)
(

1
−1

)
.

Note that (1, 1) is a basis of ∆ and (1,−1) is normal to ∆.
Following the ideas from [5], we can prove that

ly||(Fε,µ, (x, y), v) = lim sup
n→∞

1
n

n∑
i=1

log

∣∣∣∣∣∣∂ fµ
∂x

( f i(x))

∣∣∣∣∣∣ = ly( f , x)

and

ly⊥(Fε,µ, (x, y), v) = lim
n→∞

1
n

n∑
i=1

log

∣∣∣∣∣∣(1 − 2ε)
∂ fµ
∂x

( f i(x))

∣∣∣∣∣∣ = ly⊥( f , x).

It is known, see [2], [3, Theorem 2.8 and Proposition 2.21], that LE∥(x) measures the complexity
along the trajectory of x and LE⊥(x) measures the convergence to ∆, i.e. the synchronization, which is
possible when LE⊥(x) < 0. A chaotic synchronization is possible when LE∥(x) > 0. In Figure 4, we
will show the values in the parameter space (ε, µ) where the synchronization is possible.

Note that when ε = 0, the map F0,µ is the product map fµ× fµ. When ε = 1 we have that F0,µ(x, y) =
( fµ(y), fµ(x)), and it is known as antitriangular map. The attractors of product and antitriangular maps
have been studied in several papers (see, e.g. [1]).

It is clear that if fµ has two fixed points (µ > 1) and ε = 0, then there exist orbits of F0,µ that do
not synchronize: the fixed points P3 =

(
0, µ−1

µ

)
and P4 =

(
µ−1
µ
, 0

)
. When µ ∈ (1, 3], the fixed point

P2 =
(
µ−1
µ
, µ−1
µ

)
attracts the orbits of all the points with a positive initial conditions while P3 and P4

attract the orbits with initial with one coordinate equal to zero. It is clear that the orbits which do not
synchronize increase when µ > 3.

4. Attractors and bifurcation scenarios

Below we show the behaviour of the attractors when ε ranges the interval [0, 1]. We see the typical
attractor of the product map when ε = 0; this attractor is perturbed until the parameter ε enters a region
of synchronization, and synchronized attractors contained in ∆ are shown. After that, the parameter
enters the region S 3, where the fixed point P3 is LAS, leaving the stability region via a Neimark-Sacker
bifurcation given by complex eigenvalues with modulus one [15]. After that, the circle is perturbed and
the attractors evolve to finish when ε = 1 of a well-known attractor of an antitriangular map. Figure 5
shows bifurcation diagrams on the variable x for fixed values of µ and ε ranging the interval [0, 1].

The information of Figure 5 is not complete. Only the variable x is shown, and some additional
information is necessary to have a complete picture of know the shape of the attractors. So, we add
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(a) (b)

Figure 4. (a) Parameter region (ε, µ) where the estimations of normal Lyapunov exponent is
negative. (b) Parameter region (ε, µ) where the estimations of normal Lyapunov exponent is
negative and tangential Lyapunov exponent is positive.

(a) (b)

(c) (d)

Figure 5. Bifurcation for parameter values µ = 3.568(a), µ = 3.6(b), µ = 3.8(c) and µ =
3.85(d). On the x-axis we represent the parameter ε ∈ [0, 1] with step size 0.001. On the
y-axis the value of the last 200 points of the first coordinate of an orbit of length 10000 with
initial condition x0 = 0.4 and y0 = 0.9.
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figures of different orbits with both coordinates and explain how the bifurcations behave. It is important
to realize that Figure 5 is shown the projection to the X-axis of attractors of the plane and that different
shapes can give rise to the same projection. For instance, the projections on the X-axis of a closed
curve and a rectangle can be the same interval, although the dynamics can be completely different. So,
Figures 6–9 are useful for a better understanding of Figure 5.

(a) (b) (c)

(d) (e) (f)

Figure 6. For µ = 3.568, plot of the last 10000 points of an orbit of length 100000 with
initial condition x0 = 0.4 and y0 = 0.9 for ε = 0(a), ε = 0.035(b), ε = 0.135(c), ε = 0.965(d),
ε = 0.995(e) and ε = 1(f).

Figure 6 completes the bifurcation diagram of Figure 5a. We show six phase space plots for several
values of ε when µ = 3.568. Note that for µ = 3.568, the map fµ is not chaotic and almost all the orbits
all attracted by a periodic orbit. So, in (a) we can see a periodic attractor of F0,µ, which evolves peri-
odically until we meet a Neimark-Sacker bifurcation in which a two periodic orbit bifurcates into two
periodic curves. The curves collapse to a two periodic orbit until we reach the synchronization. When
ε is big enough, so no synchronization is possible, we have fixed points which evolve to an invariant
curve via a Neimark-Sacker bifurcation. When the invariant curve disappears, we have periodic orbits
again.

Figure 7 completes the bifurcation diagram of Figure 5b. First, we have a non-synchronized orbit
of F0,µ shown in Figure 7a, which evolves until we enter the parameter region where synchronization
is possible. In Figure 7b, we show an intermediate attractor. This region of synchronization is reached
by a periodic orbit of period two. The attractor in ∆ is shown in Figure 7c. The region where syn-
chronization is possible breaks to a fixed point, and after a Neimark-Sacker bifurcation Figure 7d, and
then the attractors evolve to get a typical attractor with a non-empty interior of the antitriangular map
F1,µ in Figure 7f. Figure 7e shows an intermediate step between the synchronization region and the
antitriangular map.

Networks and Heterogeneous Media Volume 18, Issue 1, 275–290.
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(a) (b) (c)

(d) (e) (f)

Figure 7. For µ = 3.6, plot of the last 10000 points of an orbit of length 100000 with initial
condition x0 = 0.4 and y0 = 0.9 for ε = 0(a), ε = 0.01(b), ε = 0.135(c), ε = 0.955(d),
ε = 0.995(e) and ε = 1(f).

Figure 8 completes the bifurcation diagram of Figure 5c. We start by showing the attractor of
F0,µ, which evolves following Figures 8b–d and degenerates to a periodic orbit via a Neimark-Sacker
bifurcation Figure 8e. When the parameter ε enters the region where synchronization is possible, we
have Figure 8f. Then, the system synchronizes Figures 8g and leaves the synchronization region Figure
8h, followed by a fixed orbit which bifurcates to a closed curve via a Neimark-Sacker bifurcation. The
curve degenerates to several attractors, Figure 8j and Figure 8k until we arrive at the final attractor of
the antitriangular map Figure 8l. It is worth pointing out Figures 8f,h. They indicate that when the
parameter ε is going to enter the synchronization region, a two periodic orbit “explodes” to an attractor
with unclear structure. The same happens when ε leaves the parameter region where the orbits of x
and y synchronize in ∆.

Figure 9 completes the bifurcation diagram of Figure 5d. Figure 9a shows the attractor of F0,µ.
Then, Figures 9b–f show the route to synchronization parameters Figure 9g. Note that we arrive at
this parameter region after a Neimark-Sacker bifurcation of a periodic point of period two. After
the synchronization, we have a fixed point which bifurcates to a periodic curve Figure 9h, which
degenerates Figures 9i–k. Finally, we get the attractor of the antitriangular map Figure 9l.

Remark 1. As stated in [17], since ∆ is invariant by Fε,µ and the dynamics restricted to ∆ is given
by the dynamics of fµ, we know that some complex behavior can found when µ > µ0 = 3.5699... as
the topological entropy of fµ is positive (see [5] for further discussions on this issue). When µ < µ0

the topological entropy of fµ is zero and the Lyapunov exponents are negative, and the unique possible
attractors are periodic orbits. Thus the diagonal ∆ is free of complexity, but it is unclear whether it is
possible to have a complicated behavior when the dynamics are outside ∆. Figure 6 shows the existence
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. For µ = 3.8, plot of the last 10000 points of an orbit of length 100000 with initial
condition x0 = 0.4 and y0 = 0.9 for ε = 0(a), ε = 0.05(b), ε = 0.065(c), ε = 0.075(d),
ε = 0.09(e), ε = 0.17(f), ε = 0.19(g), ε = 0.83(h), ε = 0.905(i), ε = 0.93(j), ε = 0.94(k) and
ε = 1(l).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9. For µ = 3.85, plot of the last 10000 points of an orbit of length 100000 with initial
condition x0 = 0.4 and y0 = 0.9 for ε = 0(a), ε = 0.035(b), ε = 0.075(c), ε = 0.085(d),
ε = 0.09(e), ε = 0.105(f), ε = 0.17(g), ε = 0.895(h), ε = 0.91(i), ε = 0.915(j), ε = 0.92(k)
and ε = 1(l).
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of an invariant closed curve. Still, it is unclear whether the dynamics on this curve are complicated or
not since it could be conjugate to an irrational rotation. Additionally, we did not observe the existence
of attractors that can have positive two-dimensional Lebesgue measure.

5. Discussion

Although this paper considers the logistic map, we present a general method to decide whether a
coupled two-dimensional system can locally synchronize to the diagonal. This result completes the
paper [5], where the method was presented for dimensions greater than two. The process to estimate
Lyapunov exponents depends on the fact that the Jacobian matrix on the diagonal is circulant and can be
easily adapted for different types of coupling, for instance, linear coupling. The bifurcation diagrams,
jointly with the shown orbits, illustrate the results. This author would be surprised if significant new
phenomena are shown when the logistic map is replaced with another regular enough one-dimensional
map. It is substantial to find conditions to guarantee that almost all orbits in the system converge to the
diagonal. Still, this question is challenging to solve because the dynamics of two-dimensional systems
are far from being characterized.

6. Conclusion

We have considered a two-dimensional coupled map based on the one-dimensional logistic family.
We can see this system as a deformation through the coupling parameter ε with a product map from
one side and an antitriangular map from the other. Then, we use the fact that the Jacobian matrix at
the diagonal is circular to give an explicit formula to estimate Lyapunov exponents and analyze when
the system can locally evolve to synchronize their orbits in both chaotic and non-chaotic ways. We
have obtained evidence that the dynamics when ε is close to zero are a distortion of the dynamics
when ε = 0. A similar result is obtained for ε = 1. So, the dynamics evolve from the case ε = 0 to
ε = 1 through a huge parameter region where orbits synchronize. We must emphasize that the method
described in this paper can be easily adapted for systems based on regular enough one-dimensional
maps different from the logistic family considered in this paper.
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9. J. Graczyk, D. Sands, G. Ś wiatek, Metric attractors for smooth unimodal maps, Ann. Math., 159
(2004), 725–740. https://doi.org/10.4007/annals.2004.159.725

10. S. Isola, A. Politi, S. Ruffo, A. Torcini, Lyapunov spectra of coupled map lattices, Phys. Lett. A.,
143 (1990), 365–368. https://doi.org/10.1016/0375-9601(90)90373-V

11. K. Kaneko, Period-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like structures
and spatial intermittency in coupled logistic lattice: Towards a prelude of a “field theory of chaos”,
Progr. Theor. Phys., 72 (1984), 480–486. https://doi.org/10.1143/PTP.72.480

12. K. Kaneko, Globally coupled chaos violates the law of large numbers but not the central-limit
theorem, Phys. Rev. Lett. 65 (1990), 1391–1394. https://doi.org/10.1103/PhysRevLett.65.1391

13. K. Kaneko, Overview of coupled map lattices, Chaos 2 (1992), 279–282.
https://doi.org/10.1063/1.165869

14. M. Kopel, Simple and complex adjustment dynamics in Cournot duopoly model, Chaos, Solitons
Fractals, 7 (1996), 2031–2048. https://doi.org/10.1016/S0960-0779(96)00070-7

15. Yu. A. Kuznetsov, Numerical Analysis of Bifurcations, Elements of applied bifurcation theory,
New York: Springer-Verlag, 2004.

16. Y. A. Kuznetsov, R. J. Sacker, Neimark-Sacker bifurcation, Scholarpedia, 3 (2008), 1845.
https://doi.org/10.4249/scholarpedia.1845

17. M. Lampart, P. Oprocha, Chaotic sub-dynamics in coupled logistic maps, Physica D., 335 (2016),
45–53. https://doi.org/10.1016/j.physd.2016.06.010

18. M. Lampart, T. Martinovic, Chaotic behavior of the CML model with respect to the state and
coupling parameters, J. Math. Chem., 57 (2019), 1670–1681. https://doi.org/10.1007/s10910-019-
01023-2
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