Perturbations of minimizing movements and curves of maximal slope

  • Received: 01 October 2017 Revised: 01 April 2018
  • 47J35, 47J30, 35B27, 35K90, 49J05

  • We modify the De Giorgi's minimizing movements scheme for a functional $φ$, by perturbing the dissipation term, and find a condition on the perturbations which ensures the convergence of the scheme to an absolutely continuous perturbed minimizing movement. The perturbations produce a variation of the metric derivative of the minimizing movement. This process is formalized by the introduction of the notion of curve of maximal slope for $φ$ with a given rate. We show that if we relax the condition on the perturbations we may have many different meaningful effects; in particular, some perturbed minimizing movements may explore different potential wells.

    Citation: Antonio Tribuzio. Perturbations of minimizing movements and curves of maximal slope[J]. Networks and Heterogeneous Media, 2018, 13(3): 423-448. doi: 10.3934/nhm.2018019

    Related Papers:

  • We modify the De Giorgi's minimizing movements scheme for a functional $φ$, by perturbing the dissipation term, and find a condition on the perturbations which ensures the convergence of the scheme to an absolutely continuous perturbed minimizing movement. The perturbations produce a variation of the metric derivative of the minimizing movement. This process is formalized by the introduction of the notion of curve of maximal slope for $φ$ with a given rate. We show that if we relax the condition on the perturbations we may have many different meaningful effects; in particular, some perturbed minimizing movements may explore different potential wells.



    加载中
    [1] N. Ansini, Gradient flows with wiggly potential: a variational approach to the dynamics, in Mathematical Analysis of Continuum Mechanics and Industrial Applications Ⅱ, CoMFoS16 (Springer), 30 (2017), 139-151. doi: 10.1007/978-981-10-6283-4_12
    [2] N. Ansini, A. Braides and J. Zimmer, Minimising movements for oscillating energies: The critical regime, Proceedings of the Royal Society of Edinburgh Section A (in press), 2016, arXiv: 1605.01885.
    [3] Curvature-driven flows: a variational approach. SIAM Journal of Control and Optimization (1993) 31: 387-438.
    [4] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhauser Verlag, second edition, 2008.
    [5] A. Braides, Γ-convergence for Beginners, Oxford University Press, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001
    [6] A. Braides, Local Minimization, Variational Evolution and Γ-convergence, Springer Cham, 2014. doi: 10.1007/978-3-319-01982-6
    [7] Minimizing movements along a sequence of functionals and curves of maximal slope. Comptes Rendus Matematique (2005) 354: 685-689.
    [8] M. Colombo and M. Gobbino, Passing to the limit in maximal slope curves: from a regularized Perona-Malik to the total variation flow, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1250017, 19pp. doi: 10.1142/S0218202512500170
    [9] L. C. Evans, Partial Differential Equations, American Mathematical Society, second edition, 2010. doi: 10.1090/gsm/019
    [10] F. Fleissner, Γ-convergence and relaxations for gradient flows in metric spaces: A minimizing movement approach, ESAIM Control, Optimisation and Calculus of Variations (to appear), preprint, arXiv: 1603.02822, (2016).
    [11] F. Fleissner and G. Savaré, Reverse approximation of gradient flows as minimizing movements: A conjecture by De Giorgi, Forthcoming Articles, (2018), 30pp, arXiv: 1711.07256. doi: 10.2422/2036-2145.201711_008
    [12] The variational formulation of the Fokker-Plank equation. SIAM Journal of Mathematical Analysis (1998) 29: 1-17.
    [13] Gamma-convergence of gradient flows and application to Ginzburg-Landau. Communications on Pure and Applied Mathematics (2004) 57: 1627-1672.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6278) PDF downloads(355) Cited by(2)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog