We are devoted to the study of the following sub-Laplacian system with Hardy-type potentials and critical nonlinearities
$ \begin{equation*} \left\{\begin{aligned} -\Delta_{\mathbb{G}}u-\mu_{1}\frac{\psi^{2}u}{\text{d}(z)^{2}} = \lambda_{1}\frac{\psi^{\alpha}|u|^{2^*(\alpha)-2}u}{\text{d}(z)^{\alpha}}+\beta p_{1}f(z)\frac{\psi^{\gamma}|u|^{p_{1}-2}u|v|^{p_{2}}}{\text{d}(z)^{\gamma}}\,\,\, \text{in } \mathbb{G},\\ -\Delta_{\mathbb{G}}v-\mu_{2}\frac{\psi^{2}v}{\text{d}(z)^{2}} = \lambda_{2}\frac{\psi^{\alpha}|v|^{2^*(\alpha)-2}v}{\text{d}(z)^{\alpha}}+\beta p_{2}f(z)\frac{\psi^{\gamma}|u|^{p_{1}}|v|^{p_{2}-2}v}{\text{d}(z)^{\gamma}}\,\,\, \text{in } \mathbb{G}, \end{aligned}\right. \end{equation*} $
where $ -\Delta_{\mathbb{G}} $ is the sub-Laplacian on Carnot group $ \mathbb{G} $, $ \mu_{1} $, $ \mu_{2}\in [0, \mu_{\mathbb{G}}) $, $ \alpha, \, \gamma\in (0, 2) $, $ \lambda_{1} $, $ \lambda_{2} $, $ \beta $, $ p_{1} $, $ p_{2} > 0 $ with $ 1 < p_{1}+p_{2} < 2 $, $ \text{d}(z) $ is the $ \Delta_{\mathbb{G}} $-gauge, $ \psi = |\nabla_{\mathbb{G}}\text{d}(z)| $, $ 2^*(\alpha): = \frac{2(Q-\alpha)}{Q-2} $ is the critical Sobolev-Hardy exponents, and $ \mu_{\mathbb{G}} = (\frac{Q-2}{2})^{2} $ is the best Hardy constant on $ \mathbb{G} $. By combining a variant of the symmetric mountain pass theorem with the genus theory, we prove the existence of infinitely many weak solutions whose energy tends to zero when $ \beta $ or $ \lambda_{1} $, $ \lambda_{2} $ belong to a suitable range.
Citation: Hongying Jiao, Shuhai Zhu, Jinguo Zhang. Existence of infinitely many solutions for critical sub-elliptic systems via genus theory[J]. Communications in Analysis and Mechanics, 2024, 16(2): 237-261. doi: 10.3934/cam.2024011
We are devoted to the study of the following sub-Laplacian system with Hardy-type potentials and critical nonlinearities
$ \begin{equation*} \left\{\begin{aligned} -\Delta_{\mathbb{G}}u-\mu_{1}\frac{\psi^{2}u}{\text{d}(z)^{2}} = \lambda_{1}\frac{\psi^{\alpha}|u|^{2^*(\alpha)-2}u}{\text{d}(z)^{\alpha}}+\beta p_{1}f(z)\frac{\psi^{\gamma}|u|^{p_{1}-2}u|v|^{p_{2}}}{\text{d}(z)^{\gamma}}\,\,\, \text{in } \mathbb{G},\\ -\Delta_{\mathbb{G}}v-\mu_{2}\frac{\psi^{2}v}{\text{d}(z)^{2}} = \lambda_{2}\frac{\psi^{\alpha}|v|^{2^*(\alpha)-2}v}{\text{d}(z)^{\alpha}}+\beta p_{2}f(z)\frac{\psi^{\gamma}|u|^{p_{1}}|v|^{p_{2}-2}v}{\text{d}(z)^{\gamma}}\,\,\, \text{in } \mathbb{G}, \end{aligned}\right. \end{equation*} $
where $ -\Delta_{\mathbb{G}} $ is the sub-Laplacian on Carnot group $ \mathbb{G} $, $ \mu_{1} $, $ \mu_{2}\in [0, \mu_{\mathbb{G}}) $, $ \alpha, \, \gamma\in (0, 2) $, $ \lambda_{1} $, $ \lambda_{2} $, $ \beta $, $ p_{1} $, $ p_{2} > 0 $ with $ 1 < p_{1}+p_{2} < 2 $, $ \text{d}(z) $ is the $ \Delta_{\mathbb{G}} $-gauge, $ \psi = |\nabla_{\mathbb{G}}\text{d}(z)| $, $ 2^*(\alpha): = \frac{2(Q-\alpha)}{Q-2} $ is the critical Sobolev-Hardy exponents, and $ \mu_{\mathbb{G}} = (\frac{Q-2}{2})^{2} $ is the best Hardy constant on $ \mathbb{G} $. By combining a variant of the symmetric mountain pass theorem with the genus theory, we prove the existence of infinitely many weak solutions whose energy tends to zero when $ \beta $ or $ \lambda_{1} $, $ \lambda_{2} $ belong to a suitable range.
[1] | N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier, 40 (1990), 313–356. https://doi.org/10.5802/aif.1215 doi: 10.5802/aif.1215 |
[2] | L. D'Ambrosio, Some Hardy inequalities on the Heisenberg group, Differ. Equ., 40 (2004), 552–564. https://doi.org/10.1023/B:DIEQ.0000035792.47401.2a doi: 10.1023/B:DIEQ.0000035792.47401.2a |
[3] | L. D'Ambrosio, Hardy-type inequalities related to degenerate elliptic differential operators, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5 (2005), 451–486. https://doi.org/10.2422/2036-2145.2005.3.04 doi: 10.2422/2036-2145.2005.3.04 |
[4] | D. Cao, P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Diff. Equ., 205 (2004), 521–537. https://doi.org/10.1016/j.jde.2004.03.005 doi: 10.1016/j.jde.2004.03.005 |
[5] | N. Ghoussoub, F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequality, Geom. Funct. Anal., 16 (2006), 897–908. https://doi.org/10.1007/s00039-006-0579-2 doi: 10.1007/s00039-006-0579-2 |
[6] | N. Ghoussoub, F. Robert, Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth, Int. Math.Res. Pap. IMRP, 2006 (2006), 1–85. https://doi.org/10.1155/IMRP/2006/21867 doi: 10.1155/IMRP/2006/21867 |
[7] | D. Kang, S. Peng, Existence of solutions for elliptic problems with critical Sobolev-Hardy exponents, Israel J. Math., 143 (2004), 281–297. https://doi.org/10.1007/BF02803503 doi: 10.1007/BF02803503 |
[8] | D. Kang, S. Peng, Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential, Appl. Math. Lett., 18 (2005), 1094–1100. https://doi.org/10.1016/j.aml.2004.09.016 doi: 10.1016/j.aml.2004.09.016 |
[9] | D. Cao, D. Kang, Solutions of quasilinear elliptic problems involving a Sobolev exponent and multiple Hardy-type terms, J. Math. Anal. Appl., 333 (2007), 889–903. https://doi.org/10.1016/j.jmaa.2006.12.005 doi: 10.1016/j.jmaa.2006.12.005 |
[10] | F. Demengel, E. Hebey, On some nonlinear equations involving the $p$-Laplacian with critical Sobolev growth, Adv. Diff. Equ., 3 (1998), 533–574. https://doi.org/10.57262/ade/1366292563 doi: 10.57262/ade/1366292563 |
[11] | N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703–5743. https://doi.org/10.1090/S0002-9947-00-02560-5 doi: 10.1090/S0002-9947-00-02560-5 |
[12] | P. Han, Quasilinear elliptic problems with critical exponents and Hardy terms, Nonlinear Anal., 61 (2005), 735–758. https://doi.org/10.1016/j.na.2005.01.030 doi: 10.1016/j.na.2005.01.030 |
[13] | B. Abdellaoui, V. Felli, I. Peral, Some remarks on systems of elliptic equations doubly critical in the whole $\mathbb{R}^{N}$, Calc. Var., 34 (2009), 97–137. https://doi.org/10.1007/s00526-008-0177-2 doi: 10.1007/s00526-008-0177-2 |
[14] | E. Colorado, R. Lopez-Soriano, A. Ortega, Existence of bound and ground states for an elliptic system with double criticality, Nonlinear Anal., 216 (2022), 112730. https://doi.org/10.1016/j.na.2021.112730 doi: 10.1016/j.na.2021.112730 |
[15] | V. Felli, S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, Comm. Partial Diff. Equ., 31 (2006), 469–495. https://doi.org/10.1080/03605300500394439 doi: 10.1080/03605300500394439 |
[16] | B. Abdellaoui, V. Felli, I. Peral, Existence and non-existence results for quasilinear elliptic equations involving the $p$-Laplacian, Bollettino U. M. I., 9 (2006), 445–484. |
[17] | R. Filippucci, P. Pucci, F. Robert, On a $p$-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 91 (2009), 156–177. https://doi.org/10.1016/j.matpur.2008.09.008 doi: 10.1016/j.matpur.2008.09.008 |
[18] | P. Pucci, R. Servadei, Existence, non-existence and regularity of radial ground states for $p$-Laplacian equations with singular weights, Ann. Inst. H. Poincare A.N.L., 25 (2008), 505–537. https://doi.org/10.1016/J.ANIHPC.2007.02.004 doi: 10.1016/J.ANIHPC.2007.02.004 |
[19] | V. Ambrosio, T. Isernia, On a Fractional $p \& q$ Laplacian Problem with Critical Sobolev-Hardy Exponents, Mediterr. J. Math., 15 (2018), 219. https://doi.org/10.1007/s00009-018-1259-9 doi: 10.1007/s00009-018-1259-9 |
[20] | S. Bordoni, R. Filippucci, P. Pucci, Existence problems on Heisenberg groups involving Hardy and critical terms, J. Geom. Anal., 30 (2020), 1887–1917. https://doi.org/10.1007/s12220-019-00295-z doi: 10.1007/s12220-019-00295-z |
[21] | A. Loiudice, Local behavior of solutions to sunelliptic problems with Hardy potential on Carnot groups, Mediterr. J. Math., 15 (2018), 81. https://doi.org/10.1007/s00009-018-1126-8 doi: 10.1007/s00009-018-1126-8 |
[22] | A. Loiudice, Critical problems with hardy potential on Stratified Lie groups, Advances in Differential Equations, 28 (2023), 1–33. https://doi.org/10.57262/ade028-0102-1 doi: 10.57262/ade028-0102-1 |
[23] | A. Loiudice, Critical growth problems with singular nonlinearities on Carnot groups, Nonlinear Anal., 126 (2015), 415–436. https://doi.org/10.1016/j.na.2015.06.010 doi: 10.1016/j.na.2015.06.010 |
[24] | J. Zhang, Sub-elliptic problems with multiple critical Sobolev- Hardy exponents on Carnot groups, Manuscripta Math., 172 (2023), 1–29. https://doi.org/10.1007/s00229-022-01406-x doi: 10.1007/s00229-022-01406-x |
[25] | J. Zhang, S. Zhu, On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups, Comm. Anal. Mech., 15(2023), 70–90. doi:10.3934/cam.2023005 doi: 10.3934/cam.2023005 |
[26] | R. Kajikiya, A critical point theore related to the symmetric mountain pass lemma and its applications to elliptic equation, J. Funct. Anal., 225 (2005), 352–370. https://doi.org/10.1016/j.jfa.2005.04.005 doi: 10.1016/j.jfa.2005.04.005 |
[27] | X. He, W. Zou, Infinitely many arbitrarily small solutions for singular elliptic problems with critical Sobolev-Hardy exponents, Proceedings Edin. math. Soc., 52 (2009), 97–108. https://doi.org/10.1017/S0013091506001568 doi: 10.1017/S0013091506001568 |
[28] | L. Baldelli, R. Filippucci, Singular quasilinear critical Schródinger equations in $\mathbb{R}^N$, Commun. Pure Appl. Anal., 21 (2022), 2561–2586. https://doi.org/10.3934/cpaa.2022060 doi: 10.3934/cpaa.2022060 |
[29] | S. Liang, J. Zhang, Multiplicity of solutions for a class of quasilinear elliptic equation involving the critical Sobolev and Hardy exponents Nonlinear Differ. Equ. Appl., 17 (2010), 55–67. https://doi.org/10.1007/s00030-009-0039-4 |
[30] | S. Liang, J. Zhang, Infinitely many small solutions for the $p(x)$-Laplacian operator with nonlinear boundary conditions, Annali di Matematica, 192 (2013), 1–16. https://doi.org/10.1007/s10231-011-0209-y doi: 10.1007/s10231-011-0209-y |
[31] | S. Liang, S. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in $\mathbb{R}^{N}$, Nonlinear Analysis: TMA, 81 (2013), 31–41. https://doi.org/10.1016/j.na.2012.12.003 doi: 10.1016/j.na.2012.12.003 |
[32] | A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, in: Springer Monographs in Mathematics, Springer, Berlin, 2007. https://doi.org/10.1007/978-3-540-71897-0 |
[33] | G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161–207. https://doi.org/10.1007/BF02386204 doi: 10.1007/BF02386204 |
[34] | G. B. Folland, E. Stein, Hardy Spaces on Homogeneous Groups, in: Mathematical Notes, vol. 28, University Press, Princeton, NJ, 1982. https://doi.org/10.1515/9780691222455 |
[35] | N. Garofalo, D. Vassilev, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot Groups, Math. Ann., 318 (2000), 453–516. https://doi.org/10.1007/s002080000127 doi: 10.1007/s002080000127 |
[36] | E. Lanconelli, Nonlinear equations on Carnot groups and curvature problems for CR manifolds, Rend. Mat. Acc. Lincei, 14 (2003), 227–238. |
[37] | M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Mac Millan, New York, 1964. |
[38] | P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics. Vol. 65, American Mathematical Society, Providence, RI 1986. https://doi.org/10.1007/978-1-4612-4146-1 |
[39] | P. Pucci, T. Temperini, On the concentration-compactness principle for Folland-Stein spaces and for fractional horizontal Sobolev spaces, Math. Engineering, 5 (2023), 1–21. https://doi.org/10.3934/mine.2023007 doi: 10.3934/mine.2023007 |
[40] | P. Pucci, T. Temperini, Concentration-compactness results for systems in the Heisenberg group, Opuscula Math., 40 (2020), 151–162. https://doi.org/10.7494/OpMath.2020.40.1.151 doi: 10.7494/OpMath.2020.40.1.151 |
[41] | J. Zhang, On the existence and multiplicity of solutions for a class of sub-Laplacian problems involving critical Sobolev- Hardy exponents on Carnot groups, Appl. Anal., 102 (2023), 4209–4229. https://doi.org/10.1080/00036811.2022.2107910 doi: 10.1080/00036811.2022.2107910 |
[42] | J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var., 3 (1995), 493–512. https://doi.org/10.1007/BF01187898 doi: 10.1007/BF01187898 |