Homogenization of a thermal problem with flux jump

  • Received: 01 December 2015
  • Primary: 35B27, 80M35; Secondary: 80M40.

  • The goal of this paper is to analyze, through homogenization techniques, the effective thermal transfer in a periodic composite material formed by two constituents, separated by an imperfect interface where both the temperature and the flux exhibit jumps. Following the hypotheses on the flux jump, two different homogenized problems are obtained. These problems capture in various ways the influence of the jumps: in the homogenized coefficients, in the right-hand side of the homogenized problem, and in the correctors.

    Citation: Renata Bunoiu, Claudia Timofte. Homogenization of a thermal problem with flux jump[J]. Networks and Heterogeneous Media, 2016, 11(4): 545-562. doi: 10.3934/nhm.2016009

    Related Papers:

    [1] Renata Bunoiu, Claudia Timofte . Homogenization of a thermal problem with flux jump. Networks and Heterogeneous Media, 2016, 11(4): 545-562. doi: 10.3934/nhm.2016009
    [2] Sara Monsurrò, Carmen Perugia . Homogenization and exact controllability for problems with imperfect interface. Networks and Heterogeneous Media, 2019, 14(2): 411-444. doi: 10.3934/nhm.2019017
    [3] Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025
    [4] Ben Schweizer, Marco Veneroni . The needle problem approach to non-periodic homogenization. Networks and Heterogeneous Media, 2011, 6(4): 755-781. doi: 10.3934/nhm.2011.6.755
    [5] Erik Grandelius, Kenneth H. Karlsen . The cardiac bidomain model and homogenization. Networks and Heterogeneous Media, 2019, 14(1): 173-204. doi: 10.3934/nhm.2019009
    [6] Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1
    [7] Patrick Henning . Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7(3): 503-524. doi: 10.3934/nhm.2012.7.503
    [8] T. A. Shaposhnikova, M. N. Zubova . Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3(3): 675-689. doi: 10.3934/nhm.2008.3.675
    [9] Alexei Heintz, Andrey Piatnitski . Osmosis for non-electrolyte solvents in permeable periodic porous media. Networks and Heterogeneous Media, 2016, 11(3): 471-499. doi: 10.3934/nhm.2016005
    [10] François Murat, Ali Sili . A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15(1): 125-142. doi: 10.3934/nhm.2020006
  • The goal of this paper is to analyze, through homogenization techniques, the effective thermal transfer in a periodic composite material formed by two constituents, separated by an imperfect interface where both the temperature and the flux exhibit jumps. Following the hypotheses on the flux jump, two different homogenized problems are obtained. These problems capture in various ways the influence of the jumps: in the homogenized coefficients, in the right-hand side of the homogenized problem, and in the correctors.


    [1] M. Amar, D. Andreucci and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Math. Model. Methods Appl. Sci., 14 (2004), 1261-1295. doi: 10.1142/S0218202504003623
    [2] M. Amar, D. Andreucci, P. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differ. Integral Equations, 26 (2013), 885-912.
    [3] J. L. Auriault, C. Boutin and C. Geindreau, Homogenization of Coupled Phenomena in Heterogenous Media, Wiley, 2010. doi: 10.1002/9780470612033
    [4] J. L. Auriault and H. Ene, Macroscopic modelling of heat transfer in composites with interfacial thermal barrier, Int. J. of Heat and Mass Transfer, 37 (1994), 2885-2892. doi: 10.1016/0017-9310(94)90342-5
    [5] A. G. Belyaev, A. L. Pyatnitskiĭ and G. A. Chechkin, Averaging in a perforated domain with an oscillating third boundary condition, Sbornik: Mathematics, 192 (2001), 933-949. doi: 10.1070/SM2001v192n07ABEH000576
    [6] Y. Benveniste and T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity, Mech. Mater., 33 (2001), 309-323. doi: 10.1016/S0167-6636(01)00055-2
    [7] D. Brinkman, K. Fellner, P. Markowich and M. T. Wolfram, A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2-D HDG finite element scheme, Math. Models Methods Appl. Sci., 23 (2013), 839-872. doi: 10.1142/S0218202512500625
    [8] work in progress.
    [9] D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math. Anal., 44 (2012), 718-760. doi: 10.1137/100817942
    [10] D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620. doi: 10.1137/080713148
    [11] D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains, Portugaliae Math., 63 (2006), 467-496.
    [12] D. Cioranescu, P. Donato and R. Zaki, Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions, Asymptot. Anal., 53 (2007), 209-235.
    [13] I. Chourabi and P. Donato, Homogenization and correctors of a class of elliptic problems in perforated domains, Asymptot. Anal., 92 (2015), 1-43.
    [14] P. Donato, L. Faella and S. Monsurrò, Homogenization of the wave equation in composites with imperfect interface: a memory effect, J. Math. Pures Appl., 87 (2007), 119-143. doi: 10.1016/j.matpur.2006.11.004
    [15] P. Donato and K. H. Le Nguyen, Homogenization of diffusion problems with a nonlinear interfacial resistance, Nonlinear Differ. Equ. Appl., 22 (2015), 1345-1380. doi: 10.1007/s00030-015-0325-2
    [16] P. Donato, K. H. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems, J. Math. Sci. (N. Y.), 176 (2011), 891-927. doi: 10.1007/s10958-011-0443-2
    [17] P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance, Analysis and Applications, 2 (2004), 247-273. doi: 10.1142/S0219530504000345
    [18] P. Donato and I. Ţenţea, Homogenization of an elastic double-porosity medium with imperfect interface via the periodic unfolding method, Boundary Value Problems, 2013 (2013), 14pp.
    [19] H. I. Ene and D. Poliševski, Model of diffusion in partially fissured media, Z. Angew. Math. Phys., 53 (2002), 1052-1059. doi: 10.1007/PL00013849
    [20] H. I. Ene and C. Timofte, Microstructure models for composites with imperfect interface via the periodic unfolding method, Asymptot. Anal., 89 (2014), 111-122.
    [21] H. I. Ene, C. Timofte and I. Ţenţea, Homogenization of a thermoelasticity model for a composite with imperfect interface, Bull. Math. Soc. Sci. Math. Roumanie, 58 (2015), 147-160.
    [22] H. I. Ene and C. Timofte, Homogenization results for a dynamic coupled thermoelasticity problem, Romanian Reports in Physics, 68 (2016), 979-989.
    [23] K. Fellner and V. Kovtunenko, A discontinuous Poisson-Boltzmann equation with interfacial transfer: Homogenisation and residual error estimate, Applicable Analysis, (2015), 1-22. doi: 10.1080/00036811.2015.1105962
    [24] M. Gahn, P. Knabner and M. Neuss-Radu, Homogenization of reaction-diffusion processes in a two-component porous medium with a nonlinear flux condition at the interface, and application to metabolic processes in cells, SIAM J. Appl. Math., 76 (2016), 1819-1843. doi: 10.1137/15M1018484
    [25] Z. Hashin, Thin interphase-imperfect interface in elasticity with application to coated fiber composites, Journal of the Mechanics and Physics of Solids, 50 (2002), 2509-2537. doi: 10.1016/S0022-5096(02)00050-9
    [26] H. K. Hummel, Homogenization for heat transfer in polycrystals with interfacial resistances, Appl. Anal., 75 (2000), 403-424. doi: 10.1080/00036810008840857
    [27] E. R. Ijioma, A. Muntean and T. Ogawa, Pattern formation in reverse smouldering combustion: A homogenization approach, Combustion Theory and Modelling, 17 (2013), 185-223. doi: 10.1080/13647830.2012.734860
    [28] E. C. Jose, Homogenization of a parabolic problem with an imperfect interface, Rev. Roum. Math. Pures Appl., 54 (2009), 189-222.
    [29] A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton, Boston, 2000.
    [30] K. H. Le Nguyen, Homogenization of heat transfer process in composite materials, JEPE, 1 (2015), 175-188.
    [31] S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier, Adv. Math. Sci. Appl., 13 (2003), 43-63.
    [32] D. Polisevski, R. Schiltz-Bunoiu and A. Stanescu, Homogenization cases of heat transfer in structures with interfacial barriers, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 58 (2015), 463-473.
    [33] D. Polisevski and R. Schiltz-Bunoiu, Heat conduction through a first-order jump interface, New Trends in Continuum Mechanics (M. Mihailescu-Suliciu ed.), Theta Series in Advanced Mathematics, 3 (2005), 225-230.
    [34] D. Polisevski and R. Schiltz-Bunoiu, Diffusion in an intermediate model of fractured porous media, Bulletin Scientifique, Mathématiques et Informatique, 10 (2004), 99-106.
    [35] C. Timofte, Multiscale analysis of diffusion processes in composite media, Computers and Mathematics with Applications, 66 (2013), 1573-1580. doi: 10.1016/j.camwa.2012.12.003
    [36] C. Timofte, Multiscale modeling of heat transfer in composite materials, Romanian Journal of Physics, 58 (2013), 1418-1427.
    [37] C. Timofte, Multiscale analysis in nonlinear thermal diffusion problems in composite structures, Cent. Eur. J. Phys., 8 (2010), 555-561. doi: 10.2478/s11534-009-0141-6
  • This article has been cited by:

    1. V. A. Kovtunenko, A. V. Zubkova, Homogenization of the generalized Poisson–Nernst–Planck problem in a two-phase medium: correctors and estimates, 2021, 100, 0003-6811, 253, 10.1080/00036811.2019.1600676
    2. Micol Amar, Roberto Gianni, Error estimate for a homogenization problem involving the Laplace–Beltrami operator, 2018, 6, 2325-3444, 41, 10.2140/memocs.2018.6.41
    3. Renata Bunoiu, Claudia Timofte, Upscaling of a diffusion problem with interfacial flux jump leading to a modified Barenblatt model, 2019, 99, 00442267, e201800018, 10.1002/zamm.201800018
    4. Renata Bunoiu, Claudia Timofte, Upscaling of a double porosity problem with jumps in thin porous media, 2022, 101, 0003-6811, 3497, 10.1080/00036811.2020.1854232
    5. Isabelle Gruais, Dan Poliševski, Alina Ştefan, Two-temperature homogenized eigenfunctions of conduction through domains with jump interfaces, 2020, 99, 0003-6811, 2361, 10.1080/00036811.2018.1563292
    6. Renata Bunoiu, Claudia Timofte, Upscaling of a parabolic system with a large nonlinear surface reaction term, 2019, 469, 0022247X, 549, 10.1016/j.jmaa.2018.09.028
    7. Micol Amar, Daniele Andreucci, Claudia Timofte, Heat conduction in composite media involving imperfect contact and perfectly conductive inclusions, 2022, 45, 0170-4214, 11355, 10.1002/mma.8453
    8. M. Amar, A. Ayub, R. Gianni, Homogenization of composite media with non-standard transmission conditions, 2024, 537, 0022247X, 128434, 10.1016/j.jmaa.2024.128434
    9. M. Amar, D. Andreucci, C. Timofte, Interface potential in composites with general imperfect transmission conditions, 2023, 74, 0044-2275, 10.1007/s00033-023-02094-7
    10. Hongru Ma, Yanbin Tang, Homogenization of a semilinear elliptic problem in a thin composite domain with an imperfect interface, 2023, 46, 0170-4214, 19329, 10.1002/mma.9628
    11. Dan POLIŠEVSKI, Alina ŞTEFAN , Heat transfer with interfacial barrier in a fine scale mixture of two highly different conductive materials, 2024, 25, 14549069, 19, 10.59277/PRA-SER.A.25.1.03
    12. M. Amar, D. Andreucci, C. Timofte, Concentration and homogenization in composites with total flux interface conditions, 2025, 0373-3114, 10.1007/s10231-025-01557-0
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4569) PDF downloads(122) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog