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Abstract. The goal of this paper is to analyze, through homogenization tech-

niques, the effective thermal transfer in a periodic composite material formed
by two constituents, separated by an imperfect interface where both the tem-

perature and the flux exhibit jumps. Following the hypotheses on the flux

jump, two different homogenized problems are obtained. These problems cap-
ture in various ways the influence of the jumps: in the homogenized coefficients,

in the right-hand side of the homogenized problem, and in the correctors.

1. Introduction. In the last two decades, the study of the macroscopic prop-
erties of heterogeneous composite materials with imperfect contact between their
constituents has been a subject of major interest for engineers, mathematicians,
physicists. In particular, the problem of thermal transfer in such heterogeneous
media has attracted the attention of a broad category of researchers, due to the
fact that the macroscopic properties of a composite can be strongly influenced by
the imperfect bonding between its components. This imperfect contact can be gene-
rated by various causes: the presence of impurities at the boundaries, the presence
of a thin interphase, the interface damage, chemical processes.

The homogenization of a thermal problem in a two-component composite with
interfacial barrier, with jump of the temperature and continuity of the flux, was
studied for the first time in the pioneering work [4], where the asymptotic expansion
method was used. Many mathematical studies were performed since then, in order
to rigorously justify the convergence results. Various mathematical methods were
used: the energy method in [17] and [31], the two-scale convergence method in [19],
and more recently the unfolding method for periodic homogenization in [16] and
[35], to cite just a few of them. The main common point of all these studies is the
fact that at the interface between the two components the flux of the temperature
is continuous, the temperature field has a jump and the flux is proportional to this
jump. Several cases are studied, following the order of magnitude with respect to
the small parameter ε of the resistance generated by the imperfect contact between
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the constituents, leading to completely different macroscopic problems. Here, ε is
a small real parameter related to the characteristic size of the two constituents. In
some cases, an effect of the imperfect conditions is observed in the coefficients of
the homogenized matrix, via the local problems; in other cases, there is no effect at
all in the homogenized problem.

For similar homogenization problems of parabolic or hyperbolic type, we refer
the reader to [14] and [28]. For the case when both components of the composite
material are connected, we refer to [30], [32], [33], [34], [35] and [36]. Also, for
problems involving jumps in the solution in other contexts, such as heat transfer
in polycrystals with interfacial resistance, linear elasticity problems or problems
modeling the electrical conduction in biological tissues, see [1], [2], [18], [20], [21],
[22], [26] and [37].

Our goal in this paper is to analyze the effective thermal transfer in a periodic
composite material formed by two constituents, one connected and the other one
disconnected, separated by an imperfect interface where both the temperature and
the flux exhibit jumps. This mathematical model is not restricted to the thermal
transfer, but can be used in other contexts, too. Transmission problems involving
jumps in the solutions or in the fluxes are encountered in various domains, such
as linear elasticity, theory of semiconductors, the study of photovoltaic systems or
problems in media with cracks (see, for instance, [3], [6], [7], [25] and [29]). Formal
methods of averaging were widely used in the literature to deal with such imperfect
transmission problems. Still, obtaining rigorous results based on the homogeniza-
tion theory is a difficult task in many cases. Some results were nevertheless obtained
for problems with flux jump, by using homogenization techniques. We mention here
the results obtained in [24] for reaction-diffusion problems in porous media, in [27]
for problems arising in the combustion theory and in [23] for a problem correspond-
ing to the Gouy-Chapman-Stern model for an electric double layer.

Here, we consider a composite material occupying an open bounded set Ω in
RN (N ≥ 2), with a Lipschitz-continuous boundary ∂Ω. We assume that Ω is
formed by two parts denoted Ωε1 and Ωε2, occupied by two materials with different
thermal characteristics, separated by an imperfect interface Γε. We also assume
that the phase Ωε1 is connected and reaches the external fixed boundary ∂Ω and
that Ωε2 is disconnected: it is the union of domains of size ε, periodically distributed
in Ω with periodicity ε. In such a domain, we study the asymptotic behavior, as ε
tends to zero, of the solution uε = (uε1, u

ε
2) of the following problem:

−div (Aε∇uε1) = f in Ωε1,
−div (Aε∇uε2) = f in Ωε2,

Aε∇uε1 · nε =
hε

ε
(uε1 − uε2)−Gε on Γε,

Aε∇uε2 · nε =
hε

ε
(uε1 − uε2) on Γε,

uε1 = 0 on ∂Ω.

The main novelty brought by our paper consists in allowing the presence, apart
from the discontinuity in the temperature field, of a jump in the thermal flux across
the imperfect interface Γε, given by the function Gε. Two different representative
cases are studied here, following the conditions imposed on Gε (stated explicitly in
Section 2, Case 1 and Case 2). Let us mention that such functions were already
encountered in a different context, more precisely in [9] and [13] for the case of the
perforated domains with non homogeneous Neumann boundary conditions on the
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perforations. For a similar problem of homogenization in a perforated domain with
Fourier boundary conditions we refer the reader to [5]. After passage to the limit
with the unfolding method, we obtain here two different unfolded problems (stated
in Theorem 4.1 and Theorem 4.7), corresponding to the above mentioned cases
for the flux jump function Gε. In Corollary 4.2 and Theorem 4.3, we then give
the corresponding homogenized problems. In both situations, the homogenized
matrix Ahom is constant and it depends on the function describing the jump of
the solution. This phenomenon was already observed in some cases without flux
jump. Moreover, for the first case studied here, we notice in the right-hand side
the presence of a new source term distributed all over the domain Ω and depending
on the flux jump function. For the second case, we notice that the influence of the
jump in the flux is captured by the correctors only and so this jump plays no role
in the homogenized problem; nevertheless, in Remark 8 we mention a case when
the homogenized problem depends on this jump, too. This type of result is to be
compared with the Neumann problem in perforated domains (see [9], [13]), where
similar phenomena occur.

Various other scalings of the temperature and flux jumps, leading to different
macroscopic problems, will be studied in a forthcoming paper. Moreover, for the
study of the homogenization of a two permeability problem with flux jump, we refer
to [8].

The paper is organized as follows: in Section 2, we introduce the microscopic
problem and we fix the notation. In Section 3, we review the definition and the
basic properties of the unfolding operators we shall use in our proofs. We state and
prove the main homogenization results of this paper in Section 4. Corrector results
are given in Section 5. We end our paper by a few concluding remarks and some
references.

2. Setting of the problem. Let Ω be a bounded open set in RN (N ≥ 2), with
a Lipschitz continuous boundary ∂Ω and Y = (0, 1)N the reference cell in RN . We
assume that Y1 and Y2 are two non-empty disjoint connected open subsets of Y
such that Y 2 ⊂ Y and Y = Y1 ∪ Y 2. We also suppose that Γ = ∂Y2 is Lipschitz
continuous and that Y2 is connected. In fact, our results can be extended to the
case in which the set Y2 has a finite number of connected components, as in [16].

Throughout the paper, the small parameter ε will take its values in a positive
real sequence tending to zero and C will be a positive constant independent of ε,
whose value can change from line to line.

For each k ∈ ZN , we denote Y k = k+Y and Y kα = k+Yα, for α = 1, 2. For each

ε, we define, Zε =
{
k ∈ ZN : εY

k

2 ⊂ Ω
}

and we set Ωε2 =
⋃
k∈Zε

(
εY k2

)
and Ωε1 =

Ω \Ω
ε

2. The boundary of Ωε2 is denoted by Γε and nε is the unit outward normal to
Ωε2.

Our goal is to describe the asymptotic behavior, as ε → 0, of the solution uε =
(uε1, u

ε
2) of the following problem:

−div (Aε∇uε1) = f in Ωε1,
−div (Aε∇uε2) = f in Ωε2,

Aε∇uε1 · nε =
hε

ε
(uε1 − uε2)−Gε on Γε,

Aε∇uε2 · nε =
hε

ε
(uε1 − uε2) on Γε,

uε1 = 0 on ∂Ω.

(1)
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Remark 1. We notice that

Aε∇uε1 · nε −Aε∇uε2 · nε = −Gε,
which clearly shows that the flux of the solution exhibits a jump across Γε.

The function f ∈ L2(Ω) is given. Let h be a Y –periodic function in L∞(Γ) such
that there exists h0 ∈ R with 0 < h0 < h(y) a.e. on Γ. We set

hε(x) = h
(x
ε

)
a.e. on Γε.

For α, β ∈ R, with 0 < α ≤ β, let M(α, β, Y ) be the set of all the matrices A ∈
(L∞(Y ))N×N with the property that, for any ξ ∈ RN , α|ξ|2 ≤ (A(y)ξ, ξ) ≤ β|ξ|2,
almost everywhere in Y . For a Y -periodic symmetric matrix A ∈ M(α, β, Y ), we
set

Aε(x) = A
(x
ε

)
a.e. in Ω.

Let g be a Y -periodic function that belongs to L2(Γ). We define

gε(x) = g
(x
ε

)
a.e. on Γε.

For the given function Gε in (1), we consider the following two relevant forms (see
[13]):

Case 1. Gε = εg
(x
ε

)
, if MΓ(g) 6= 0.

Case 2. Gε = g
(x
ε

)
, if MΓ(g) = 0.

Here, MΓ(g) =
1

|Γ|

∫
Γ

g(y) dy denotes the mean value of the function g on Γ.

In order to write the variational formulation of problem (1), we introduce, for
every positive ε < 1, the Hilbert space

Hε = V ε ×H1(Ωε2).

The space V ε =
{
v ∈ H1(Ωε1), v = 0 on ∂Ω

}
is endowed with the norm ‖v‖V ε =

‖∇v‖L2(Ωε1), for any v ∈ V ε, and the space H1(Ωε2) is equipped with the usual norm.
On the space Hε, we consider the scalar product

(u, v)Hε =

∫
Ωε1

∇u1∇v1 dx+

∫
Ωε2

∇u2∇v2 dx+
1

ε

∫
Γε

(u1 − u2)(v1 − v2) dσx (2)

where u = (u1, u2) and v = (v1, v2) belong to the space Hε. The norm generated
by the scalar product (2) is given by

‖v‖2Hε = ‖∇v1‖2L2(Ωε1) + ‖∇v2‖2L2(Ωε2) +
1

ε
‖v1 − v2‖2L2(Γε).

The variational formulation of problem (1) is the following one: find uε ∈ Hε

such that
a(uε, v) = l(v), ∀v ∈ Hε, (3)

where the bilinear form a : Hε ×Hε → R and the linear form l : Hε → R are given
by

a(u, v) =

∫
Ωε1

Aε∇u1∇v1 dx+

∫
Ωε2

Aε∇u2∇v2 dx+

∫
Γε

hε

ε
(u1 − u2)(v1 − v2) dσx

and

l(v) =

∫
Ωε1

fv1 dx+

∫
Ωε2

fv2 dx+

∫
Γε
Gεv1 dσx,
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respectively.
We state now an existence and uniqueness result and some necessary a priori

estimates for the solution of the variational problem (3).

Theorem 2.1. For any ε ∈ (0, 1), the variational problem (3) has a unique solution
uε ∈ Hε. Moreover, there exists a constant C > 0, independent of ε, such that

‖∇uε1‖L2(Ωε1) ≤ C, ‖∇uε2‖L2(Ωε2) ≤ C

and

‖uε1 − uε2‖L2(Γε) ≤ Cε1/2.

Proof. The proof of this theorem follows exactly the same steps as in [16] and
[28].

3. The periodic unfolding method for a two-component domain. In this
section, we shall briefly recall the definitions and the main properties of the unfold-
ing operators T ε1 and T ε2 , introduced, for a two-component domain, by P. Donato et
al. in [16] (see, also, [9], [10], [11] and [15]) and of the boundary unfolding operator
T εb , introduced in [11] and [12]. The main feature of these operators is that they
map functions defined on the oscillating domains Ωε1, Ωε2 and, respectively, Γε, into
functions defined on the fixed domains Ω× Y1, Ω× Y2 and Ω× Γ, respectively.

For x ∈ RN , we denote by [x]Y its integer part k ∈ ZN , such that x−[x]Y ∈ Y and

we set {x}Y = x− [x]Y for x ∈ RN . So, for x ∈ RN , we have x = ε
([x
ε

]
+
{x
ε

})
.

For defining the above mentioned periodic unfolding operators, we consider the
following sets (see [16]):

Ẑε =
{
k ∈ ZN | εY k ⊂ Ω

}
, Ω̂ε = int

⋃
k∈Ẑε

(
εY

k
)
, Λε = Ω \ Ω̂ε,

Ω̂εα =
⋃
k∈Ẑε

(
εY kα

)
, Λεα = Ωεα \ Ω̂εα, Γ̂ε = ∂Ω̂ε2.

Definition 3.1. For any Lebesgue measurable function ϕ on Ωεα, α ∈ {1, 2}, we
define the periodic unfolding operators by the formula

T εα (ϕ)(x, y) =

 ϕ
(
ε
[x
ε

]
+ εy

)
for a.e. (x, y) ∈ Ω̂ε × Yα,

0 for a.e. (x, y) ∈ Λε × Yα.

If ϕ is a function defined in Ω, for simplicity, we write T εα (ϕ) instead of T εα (ϕ|Ωεα).
For any function φ which is Lebesgue-measurable on Γε, the periodic boundary

unfolding operator T εb is defined by

T εb (φ)(x, y) =

 φ
(
ε
[x
ε

]
+ εy

)
for a.e. (x, y) ∈ Ω̂ε × Γ,

0 for a.e. (x, y) ∈ Λε × Γ.

Remark 2. We notice that if ϕ ∈ H1(Ωεα), then T εb (ϕ) = T εα (ϕ)|Ω̂ε×Γ.

We recall here some useful properties of these operators (see, for instance, [9],
[15] and [16]).



550 RENATA BUNOIU AND CLAUDIA TIMOFTE

Proposition 1. For p ∈ [1,∞) and α = 1, 2, the operators T εα are linear and
continuous from Lp(Ωεα) to Lp(Ω× Yα) and

(i) if ϕ and ψ are two Lebesgue measurable functions on Ωεα, one has

T εα (ϕψ) = T εα (ϕ)T εα (ψ);

(ii) for every ϕ ∈ L1(Ωεα), one has

1

|Y |

∫
Ω×Yα

T εα (ϕ)(x, y) dxdy =

∫
Ω̂εα

ϕ(x) dx =

∫
Ωεα

ϕ(x) dx−
∫

Λε

ϕ(x) dx;

(iii) if {ϕε}ε ⊂ Lp(Ω) is a sequence such that ϕε −→ ϕ strongly in Lp(Ω), then

T εα (ϕε) −→ ϕ strongly in Lp(Ω× Yα);

(iv) if ϕ ∈ Lp(Yα) is Y -periodic and ϕε(x) = ϕ(x/ε), then

T εα (ϕε) −→ ϕ strongly in Lp(Ω× Yα);

(v) if ϕ ∈ W 1,p(Ωεα), then ∇y (T εα (ϕ)) = εT εα (∇ϕ) and T εα (ϕ) belongs to
L2
(
Ω;W 1,p(Yα)

)
. Moreover, for every ϕ ∈ L1(Γε), one has∫

Γ̂ε
ϕ(x) dσx =

1

ε|Y |

∫
Ω×Γ

T εb (ϕ)(x, y) dx dσy.

The following result was proven, for our geometry, in [16].

Lemma 3.2. If uε = (uε1, u
ε
2) is a sequence in Hε, then

1

ε|Y |

∫
Ω×Γ

|T ε1 (uε1)− T ε2 (uε2)|2 dxdσy ≤
∫

Γε
|uε1 − uε2|2 dσx.

Moreover, if ϕ ∈ D(Ω), then, for ε small enough, we have

ε

∫
Γε
hε(uε1 − uε2)ϕdσx =

∫
Ω×Γ

h(y) (T ε1 (uε1)− T ε2 (uε2)) T εα (ϕ) dx dσy,

with α = 1 or α = 2.

We also recall here some general compactness results obtained in [16] for bounded
sequences in Hε.

Lemma 3.3. Let uε = (uε1, u
ε
2) be a bounded sequence in Hε. Then, there exists a

constant C > 0, independent of ε, such that

‖T ε1 (∇uε1)‖L2(Ω×Y1) ≤ C,
‖T ε2 (∇uε2)‖L2(Ω×Y2) ≤ C,

‖T ε2 (uε1)− T ε1 (uε2)‖L2(Ω×Γ) ≤ Cε.

Theorem 3.4. Let uε = (uε1, u
ε
2) be a bounded sequence in Hε. Then, up to

a subsequence, still denoted by ε, there exist u1 ∈ H1
0 (Ω), u2 ∈ L2(Ω), û1 ∈
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L2
(
Ω, H1

per(Y1)
)

and û2 ∈ L2
(
Ω, H1(Y2)

)
such that

T ε1 (uε1) −→ u1 strongly in L2
(
Ω, H1(Y1)

)
,

T ε1 (∇uε1) ⇀ ∇u1 +∇yû1 weakly in L2(Ω× Y1),

T ε2 (uε2) ⇀ u2 weakly in L2(Ω, H1(Y2)),

T ε2 (∇uε2) ⇀ ∇yû2 weakly in L2 (Ω× Y2) ,

ũεα ⇀
|Yα|
|Y |

uα weakly in L2(Ω), α = 1, 2,

where MΓ(û1) = 0 for almost every x ∈ Ω and ·̃ denotes the extension by zero of a
function to the whole of the domain Ω. Moreover, we have u1 = u2 and

1

ε
[T ε1 (uε1)−MΓ(T ε1 (uε1))] ⇀ yΓ∇u1 + û1 weakly in L2

(
Ω, H1(Y1)

)
,

with yΓ = y −MΓ(y) and

1

ε
[T ε2 (uε2)−MΓ(T ε2 (uε2))] ⇀ û2 weakly in L2

(
Ω, H1(Y2)

)
.

4. Homogenization results. In this section, we pass to the limit, with ε→ 0, in
the variational formulation (3) of the problem (1). To this end, we use the periodic
unfolding method and the general compactness results given in Section 3.

We start by emphasizing again that by applying the general results stated in
Theorem 3.4 to the solution uε = (uε1, u

ε
2) of the variational problem (3), which is

bounded in Hε, we obtain, at the macroscale, u1 = u2. In what follows, we shall
denote their common value by u. We notice that u belongs to H1

0 (Ω).
Moreover, using the priori estimates from Theorem 2.1 and the general com-

pactness results from Theorem 3.4, we know that there exist u ∈ H1
0 (Ω), û1 ∈

L2(Ω, H1
per(Y1)), û2 ∈ L2(Ω, H1(Y2)) such that MΓ(û1) = 0 and up to a subse-

quence, for ε→ 0, we have:

T ε1 (uε1)→ u strongly in L2(Ω, H1(Y1)), (4)

T ε1 (∇uε1) ⇀ ∇u+∇yû1 weakly in L2(Ω× Y1), (5)

T ε2 (uε2) ⇀ u weakly in L2(Ω, H1(Y2)), (6)

T ε2 (∇uε2) ⇀ ∇yû2 weakly in L2(Ω× Y2), (7)

ũεα ⇀
|Yα|
|Y |

u weakly in L2(Ω), α = 1, 2. (8)

Moreover, one has

T ε1 (uε1)− T ε2 (uε2)

ε
⇀ û1 − u2 weakly in L2(Ω× Γ), (9)

where u2 ∈ L2(Ω, H1(Y2)) is defined by

u2 = û2 − yΓ∇u− ξΓ,
for some ξΓ ∈ L2(Ω).

Let Wper(Y1) = {v ∈ H1
per(Y1) |MΓ(v) = 0}. We consider the space

V = H1
0 (Ω)× L2 (Ω;Wper(Y1))× L2

(
Ω, H1(Y2)

)
,
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endowed with the norm

‖V ‖2V = ‖∇v +∇y v̂1‖2L2(Ω×Y1) + ‖∇v +∇yv2‖2L2(Ω×Y2) + ‖v̂1 − v2‖2L2(Ω×Γ) ,

for all V = (v, v̂1, v2) ∈ V.
For the passage to the limit, we have to distinguish between two cases, following

the form of the function Gε.

Case 1. Gε = εg
(x
ε

)
, if MΓ(g) 6= 0.

Theorem 4.1. The unique solution uε = (uε1, u
ε
2) of the variational problem (3)

converges, in the sense of Theorem 3.4, to the unique solution (u, û1, u2) ∈ V of the
following unfolded limit problem:

1

|Y |

∫
Ω×Y1

A(y)(∇u+∇yû1)(∇ϕ+∇yΦ1) dxdy

+
1

|Y |

∫
Ω×Y2

A(y)(∇u+∇yu2)(∇ϕ+∇yΦ2) dxdy

+
1

|Y |

∫
Ω×Γ

h(y)(û1 − u2)(Φ1 − Φ2) dxdσy =

∫
Ω

f(x)ϕ(x) dx

+
|Γ|
|Y |
MΓ(g)

∫
Ω

ϕ(x) dx,

(10)

for all ϕ ∈ H1
0 (Ω), Φ1 ∈ L2(Ω, H1

per(Y1)) and Φ2 ∈ L2(Ω, H1(Y2)).

Proof. In order to obtain the limit problem (10), we first unfold the variational
formulation (3) and by using Lemma 3.2 we get

1

|Y |

∫
Ω×Y1

T ε1 (Aε)T ε1 (∇uε1)T ε1 (∇v1) dx

+
1

|Y |

∫
Ω×Y2

T ε2 (Aε)T ε2 (∇uε2)T ε2 (∇v2) dx

+
1

|Y |

∫
Ω×Γ

h(y)
T ε1 (uε1)− T ε2 (uε2)

ε

T ε1 (v1)− T ε2 (v2)

ε
dσx

=
1

|Y |

∫
Ω×Y1

T ε1 (f)T ε1 (v1) dx

+
1

|Y |

∫
Ω×Y2

T ε2 (f)T ε2 (v2) dx+
1

ε

1

|Y |

∫
Ω×Γ

T εb (Gε)T εb (v1) dσx.

For α = 1, 2, we choose in this unfolded problem the admissible test functions

vα = ϕ(x) + εωα(x)ψα

(x
ε

)
, (11)

with ϕ, ωα ∈ D(Ω), ψ1 ∈ H1
per(Y1), ψ2 ∈ H1(Y2) and for which we obviously have

T εα (vα)→ ϕ(x) strongly in L2(Ω× Yα) (12)

and

T εα (∇vα)→ ∇ϕ(x) +∇yΦα strongly in L2(Ω× Yα), (13)

where Φα(x, y) = ωα(x)ψα(y).
Now, the passage to the limit with ε→ 0 is classical, by using convergences (4)-

(9), (12)-(13) and the ideas in [15]. The only term which requires more attention is
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in the right-hand side, the integral term involving the function Gε. For this term,
we have:

1

ε

1

|Y |

∫
Ω×Γ

T εb (Gε)T εb (v1) dσx

=
1

|Y |

∫
Ω×Γ

T εb
(
g
(x
ε

))
T εb
(
ϕ(x) + εω1(x)ψ1

(x
ε

))
dσx

=
1

|Y |

∫
Ω×Γ

g(y)T εb (ϕ)(x, y) dx dσy

+ε
1

|Y |

∫
Ω×Γ

g(y)T εb (ω1)(x, y)T εb (ψ1)(x, y) dxdσy →
|Γ|
|Y |
MΓ(g)

∫
Ω

ϕ(x) dx.

(14)

By the density of D(Ω) ⊗ H1
per(Y1) in L2(Ω, H1

per(Y1)) and of D(Ω) ⊗ H1(Y2) in

L2(Ω, H1(Y2)), we get (10).
We notice that our limit problem (10) is similar with the one obtained in [16]

(see relation (3.43)), the only difference being the right-hand side, in which an extra
term involving the function g arises. More precisely, our right-hand side writes∫

Ω

F (x)ϕ(x) dx,

with

F (x) = f(x) +
|Γ|
|Y |
MΓ(g).

The extra term is, in fact, just a real constant and this allows us to prove the
uniqueness of the solution of problem (10) exactly as in [16], since the presence of
this constant term does not change the linearity nor the continuity of its right-hand
side. Thus, due to the uniqueness of (u, û1, u2) ∈ V, all the above convergences hold
true for the whole sequence, which ends the proof of the theorem.

Corollary 1. The function u ∈ H1
0 (Ω) defined by (4) is the unique solution of the

following homogenized equation:

− div (Ahom∇u) = f +
|Γ|
|Y |
MΓ(g) in Ω, (15)

where Ahom is the homogenized matrix whose entries are given, for i, j = 1, . . . , N ,
by

Ahom
ij =

1

|Y |

∫
Y1

(
aij −

N∑
k=1

aik
∂χj1
∂yk

)
dy +

1

|Y |

∫
Y2

(
aij −

N∑
k=1

aik
∂χj2
∂yk

)
dy, (16)

in terms of χj1 ∈ H1
per(Y1) and χj2 ∈ H1(Y2), j = 1, . . . , N , the weak solutions of

the following cell problems:

−divy(A(y)(∇yχj1 − ej)) = 0 in Y1,

−divy(A(y)(∇yχj2 − ej)) = 0 in Y2,

(A(y)∇yχj1) · n = (A(y)∇yχj2) · n on Γ,

(A(y)(∇yχj1 − ej)) · n = h(y)(χj1 − χ
j
2) on Γ,

MΓ(χj1) = 0,

(17)

where n denotes the unit outward normal to Y2.
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Proof. The proof of this result is classical. Indeed, by choosing successively ϕ = 0
and Φ1 = Φ2 = 0 in (10), we obtain:

1

|Y |

∫
Ω×Y1

A(y)(∇u+∇yû1)∇yΦ1 dxdy

+
1

|Y |

∫
Ω×Y2

A(y)(∇u+∇yu2)∇yΦ2 dx dy

+
1

|Y |

∫
Ω×Γ

h(y)(û1 − u2)(Φ1 − Φ2) dxdσy = 0

(18)

and

1

|Y |

∫
Ω×Y1

A(y)(∇u+∇yû1)∇ϕdxdy

+
1

|Y |

∫
Ω×Y2

A(y)(∇u+∇yu2)∇ϕdx dy

=

∫
Ω

f(x)ϕ(x) dx+
|Γ|
|Y |
MΓ(g)

∫
Ω

ϕ(x) dx.

(19)

We search now û1 and u2 in the usual form

û1(x, y) = −
N∑
j=1

∂u

∂xj
(x)χj1(y), (20)

u2(x, y) = −
N∑
j=1

∂u

∂xj
(x)χj2(y). (21)

Standard computations lead to the homogenized limit problem, in which the term
containing g gives a contribution only to the right-hand side, without affecting the
cell problems and the homogenized matrix.

Remark 3. The right scaling ε in front of the function gε prescribed at the interface
Γε leads in the limit to the presence of a new source term distributed all over the
domain Ω.

Remark 4. It is possible to study our initial problem (1) also for a nonzero func-
tion g with mean-value MΓ(g) equal to zero. But, in this situation, there is no
contribution of g in the right-hand side of the homogenized equation and, thus, the
limit problem is the same as in the case with no g at all in the microscopic problem.

Remark 5. We remark that the homogenized matrix Ahom depends on the function
h. So, the effect of the two jumps involved in our microscopic problem is recovered
in the homogenized problem, in the right-hand side and also in the left-hand side
(through the homogenized coefficients).

Remark 6. All the previous results still hold true for the case in which the set Y2

is not connected, but consists on a finite number of connected components.

Case 2. Gε(x) = g
(x
ε

)
, if MΓ(g) = 0.

Theorem 4.2. The unique solution uε = (uε1, u
ε
2) of the variational problem (3)

converges, in the sense of Theorem 3.4, to the unique solution (u, û1, u2) ∈ V of the
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following unfolded limit problem:

1

|Y |

∫
Ω×Y1

A(y)(∇u+∇yû1)(∇ϕ+∇yΦ1) dx dy

+
1

|Y |

∫
Ω×Y2

A(y)(∇u+∇yu2)(∇ϕ+∇yΦ2) dxdy

+
1

|Y |

∫
Ω×Γ

h(y)(û1 − u2)(Φ1 − Φ2) dxdσy

=

∫
Ω

f(x)ϕ(x) dx+
1

|Y |

∫
Ω×Γ

g(y)Φ1(x, y) dxdσy,

(22)

for all ϕ ∈ H1
0 (Ω), Φ1 ∈ L2(Ω, H1

per(Y1)), Φ2 ∈ L2(Ω, H1(Y2)).

Proof. In order to get the problem (22), we pass to the limit in the unfolded form
of the variational formulation (3) with the same test functions (11) as in Theorem
4.1, which verify (12) and (13). The only difference is that now the limit of the
term involving the function Gε is different. More precisely, we have:

1

ε

1

|Y |

∫
Ω×Γ

T εb (Gε)T εb (v1) dσx

=
1

ε

1

|Y |

∫
Ω×Γ

T εb
(
g
(x
ε

))
T εb
(
ϕ(x) + εω1(x)ψ1

(x
ε

))
dσx

=
1

ε

1

|Y |

∫
Ω×Γ

g(y)T εb (ϕ)(x, y) dx dσy

+
1

|Y |

∫
Ω×Γ

g(y)T εb (ω1)(x, y)T εb (ψ1)(x, y) dx dσy

=
1

ε

|Γ|
|Y |
MΓ(g)

∫
Ω

ϕ(x) dx+
1

|Y |

∫
Ω×Γ

g(y)ω1(x)ψ1(y) dxdσy.

Then, since MΓ(g) = 0, by using the density of D(Ω) ⊗ H1
per(Y1) in the space

L2(Ω, H1
per(Y1)) and of D(Ω) ⊗ H1(Y2) in the space L2(Ω, H1(Y2)), we get the

unfolded limit problem (22).
Due to the uniqueness of (u, û1, u2) ∈ V, which is proven by the Lax-Milgram

theorem, all the above convergences hold true for the whole sequence, which ends
the proof of the theorem.

Remark 7. Let us point out that the term
1

|Y |

∫
Ω×Γ

g(y)Φ1(x, y) dxdσy in (22)

represents the main difference with respect to the unfolded equation (10), where
the term involving g is a nonzero constant, recovered explicitly in the right-hand
side of the homogenized equation (15). This cannot be the case here, since this
term involves now explicitly both variables x and y. We have to understand the
contribution in the homogenized problem of this nonstandard term generated by
the discontinuity of the flux in the initial problem. Actually, it will be seen in the
next theorem that, apart from the classical solutions χj1 and χj2 of the cell problems
(17), we are led to introduce in (30)-(31) two additional scalar terms η1 and η2,
verifying a new imperfect transmission cell problem (see (32)).
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Theorem 4.3. The solution (u, û1, u2) ∈ V of (22) is such that:

û1(x, y) = −
N∑
j=1

∂u

∂xj
(x)χj1(y) + η1(y),

u2(x, y) = −
N∑
j=1

∂u

∂xj
(x)χj2(y) + η2(y),

where χj1 and χj2 are defined by (17) and the function (η1, η2) is the unique solution
of the cell problem

−divy(A(y)∇η1) = 0 in Y1,
−divy(A(y)∇η2) = 0 in Y2,
A(y)∇η1 · n = h(y)(η1 − η2)− g(y) on Γ,
A(y)∇η2 · n = h(y)(η1 − η2) on Γ,
MΓ(η1) = 0.

The function u ∈ H1
0 (Ω) is the unique solution of the following homogenized equation

− div (Ahom∇u) = f in Ω, (23)

where Ahom is the homogenized matrix whose entries are given in (16).

Proof. By choosing ϕ = 0 in (22), we obtain:

1

|Y |

∫
Ω×Y1

A(y)(∇u+∇yû1)∇yΦ1 dxdy

+
1

|Y |

∫
Ω×Y2

A(y)(∇u+∇yu2)∇yΦ2 dxdy

+
1

|Y |

∫
Ω×Γ

h(y)(û1 − u2)(Φ1 − Φ2) dxdσy =
1

|Y |

∫
Ω×Γ

g(y)Φ1(x, y) dxdσy.

(24)

We point out that the presence of the term
1

|Y |

∫
Ω×Γ

g(y)Φ1(x, y) dxdσy in this

equation represents the main difference with respect to the previous case.
By choosing now suitable test functions Φ1 and Φ2 in (24), we obtain

− divy(A(y)∇yû1) = divy(A(y)∇u) in Ω× Y1, (25)

− divy(A(y)∇yu2) = divy(A(y)∇u) in Ω× Y2, (26)

A(y)(∇u+∇yu2) · n = h(y)(û1 − u2) on Ω× Γ, (27)

A(y)(∇u+∇yû1) · n = h(y)(û1 − u2)− g(y) on Ω× Γ. (28)

We point out here that we also have a discontinuity type condition:

A(y)(∇u+∇yû1) · n = A(y)(∇u+∇yu2) · n− g(y) on Ω× Γ. (29)

In the classical case with jump in the solution and with continuity of the flux,
the use of the standard correctors χj1 and χj2 defined in (17) is enough in order to
express the functions û1 and u2 in terms of the function ∇u. The presence of the
function g in relations (28) and (29) suggests us to search û1 and u2 in the following
nonstandard form:

û1(x, y) = −
N∑
j=1

∂u

∂xj
(x)χj1(y) + η1(y), (30)
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u2(x, y) = −
N∑
j=1

∂u

∂xj
(x)χj2(y) + η2(y), (31)

where χj1 and χj2 are defined by (17) and the functions η1, η2 have to be found. To
this end, we introduce (30) and (31) in (25)-(29) and we obtain:

−divy(A(y)∇η1) = 0 in Y1,
−divy(A(y)∇η2) = 0 in Y2,
A(y)∇η1 · n = h(y)(η1 − η2)− g(y) on Γ,
A(y)∇η2 · n = h(y)(η1 − η2) on Γ,
MΓ(η1) = 0.

(32)

We obviously have
A(y)∇η1 · n−A(y)∇η2 · n = −g(y) (33)

and then we notice that the new local problem (32) is an imperfect transmission
problem, involving both the discontinuities in the solution and in the flux, given in
terms of h and g, respectively.

By the Lax-Milgram theorem, the problem (32) has a unique solution in the
space

H = Wper(Y1)×H1(Y2),

endowed with the scalar product

(η, ζ)H = (∇η1,∇ζ1)L2(Y1) + (∇η2,∇ζ2)L2(Y2) + (η1 − η2, ζ1 − ζ2)L2(Γ).

By choosing now Φ1 = Φ2 = 0 in (22), we get:

1

|Y |

∫
Ω×Y1

A(y)(∇u+∇yû1)∇ϕdx dy

+
1

|Y |

∫
Ω×Y2

A(y)(∇u+∇yu2)∇ϕdxdy

=

∫
Ω

f(x)ϕ(x) dx.

(34)

Integrating by parts with respect to x, we obtain, for x ∈ Ω,

−divx

(
1

|Y |

∫
Y1

A(y)(∇u+∇yû1) dy +
1

|Y |

∫
Y2

A(y)(∇u+∇yu2) dy

)
= f(x).

By using here the particular form (30) and (31) of the functions û1 and u2 and the
definition (16) of the matrix Ahom, we get:

− divx (Ahom∇u)

=f + divx

(
1

|Y |

∫
Y1

A(y)∇η1(y)dy +
1

|Y |

∫
Y2

A(y)∇η2(y)dy

)
in Ω,

(35)

which leads immediately to the homogenized problem (23). We notice that this
problem does not involve the function g, because the second term of the right-hand
side in (35) actually vanishes.

Remark 8. All the above results can be extended to the case in which Aε is a
sequence of matrices in M(α, β,Ω) such that

T εα (Aε)→ A strongly in L1(Ω× Y ), (36)

for some matrix A = A(x, y) in M(α, β,Ω× Y ). The heterogeneity of the medium
modeled by such a matrix induces different effects in our limit problems (10) and
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(22) respectively. In both cases, since the correctors χjα depend also on x, the new
homogenized matrix Ahom

x is no longer constant, but it depends on x. A more
interesting effect arises in the second case. As we have seen in Theorem 4.3, if the
matrix A depends only on the variable y, the functions ηα are independent of x and
there is no contribution of the term containing g in the decoupled form of the limit
problem. So, the limit equation is the same as that corresponding to the case with
no jump on the flux in the microscopic problem. Now, the dependence of A on x
prevents this phenomenon to occur, and, hence, the function g brings an explicit
contribution in the homogenized problem, which becomes

− divx (Ahom
x ∇u) = f

+ divx

(
1

|Y |

∫
Y1

A(x, y)∇η1(x, y)dy +
1

|Y |

∫
Y2

A(x, y)∇η2(x, y)dy

)
in Ω.

A similar effect was observed in the homogenization of the Neumann problem in
perforated domains (see [9]).

5. Corrector results. Our goal in this section is to state corrector results for the
problem (1). To this end, let us start by recalling the definition of the adjoints of
the unfolding operators T εα , for α = 1, 2 (see [9] and [16]).

Definition 5.1. For p ∈ [1,∞), the averaging operators Uεα : Lp(Ω×Yα)→ Lp(Ωεα),
with α = 1, 2, are defined by

Uεα(φ)(x) =


1

|Y |

∫
Y

φ
(
ε
[x
ε

]
+ εz,

{x
ε

}
Y

)
dz for a.e. x ∈ Ω̂εα,

0 for a.e. x ∈ Λεα.

It is not difficult to see that these averaging operators are almost left-inverses of
the corresponding unfolding operators T εα , i.e., for any ϕ ∈ Lp(Ωεα), one has

Uεα(T εα (ϕ))(x) =

 ϕ(x) for a.e. x ∈ Ω̂εα,

0 for a.e. x ∈ Λεα.

We recall now some useful properties of the averaging operators Uεα (see [9] and
[16]).

Proposition 2. For p ∈ [1,∞) and α = 1, 2, the operators Uεα are linear and
continuous from Lp(Ω× Yα) to Lp(Ωεα) and

(i) ‖Uεα(φ)− φ‖Lp(Ωεα) → 0 for every φ ∈ Lp(Ω);

(ii) if ϕε ∈ Lp(Ωεα), then the following statements are equivalent:

• T εα (ϕε)→ ϕ̂ strongly in Lp(Ω× Yα) and

∫
Λεα

|ϕε|p dx→ 0;

• ‖ϕε − Uεα(ϕ̂)‖Lp(Ωεα) → 0.

We are now in the position to state the convergence of the energy and corrector
results for the solution uε = (uε1, u

ε
2) of problem (1). We shall consider separately

the above mentioned representative cases corresponding to the hypotheses imposed
on the jump function Gε.

Case 1. In this case, since the term containing the flux jump gives a contribution
only to the right-hand side of the limit equation, without affecting the solutions
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of the cell problems and the homogenized matrix, we are led to standard corrector
results, whose proof follows exactly the same steps as in [16], Theorem 4.4.

Theorem 5.2. Under the assumptions of Theorem 4.1, if uε = (uε1, u
ε
2) is the

unique solution of problem (1), then

lim
ε→0

(∫
Ωε1

Aε∇uε1∇uε1 dx+

∫
Ωε2

Aε∇uε2∇uε2 dx

)

=
1

|Y |

∫
Ω×Y1

A(y)(∇u+∇yû1)(∇u+∇yû1) dxdy

+
1

|Y |

∫
Ω×Y2

A(y)(∇u+∇yu2)(∇u+∇yu2) dxdy ≤
∫

Ω

Ahom∇u∇udx,

(37)

lim
ε→0

(∫
Λε1

|∇uε1|2 dx+

∫
Λε2

|∇uε2|2 dx

)
= 0, (38)

T ε1 (∇ uε1)→ ∇u+∇yû1 strongly in L2(Ω× Y1) (39)

and
T ε2 (∇ uε2)→ ∇yû2 strongly in L2(Ω× Y2). (40)

Moreover, the following corrector result holds true:∥∥∥∥∥∥∇uε1 −∇u+

N∑
j=1

Uε1
(
∂u

∂xj

)
Uε1
(
∇yχj1

)∥∥∥∥∥∥
L2(Ωε1)

−→ 0 (41)

and ∥∥∥∥∥∥∇uε2 −∇u+

N∑
j=1

Uε2
(
∂u

∂xj

)
Uε2
(
∇yχj2

)∥∥∥∥∥∥
L2(Ωε2)

−→ 0. (42)

Case 2. In this case, the result is similar to the one stated in Theorem 5.2, but
now the functions ηα, solution of the local problem (32), appear in the correctors
of the solution uε = (uε1, u

ε
2) of problem (1), too.

Theorem 5.3. Under the assumptions of Theorem 4.3, if uε = (uε1, u
ε
2) is the

unique solution of problem (1), then (37)-(40) hold true. Moreover, we have the
following corrector result:∥∥∥∥∥∥∇uε1 −∇u+

N∑
j=1

Uε1
(
∂u

∂xj

)
Uε1
(
∇yχj1

)
− Uε1 (∇yη1)

∥∥∥∥∥∥
L2(Ωε1)

−→ 0 (43)

and ∥∥∥∥∥∥∇uε2 −∇u+

N∑
j=1

Uε2
(
∂u

∂xj

)
Uε2
(
∇yχj2

)
− Uε2 (∇yη2)

∥∥∥∥∥∥
L2(Ωε2)

−→ 0. (44)

Proof. The proof of relations (37)-(40) follows the classical steps. The main differ-
ence with respect to the previous case is that, in order to get relation (37), we need
the following convergence result:

1

ε

1

|Y |

∫
Ω×Γ

T εb (Gε)T εb (uε1) dxdσy →
1

|Y |

∫
Ω×Γ

g(y)û1(x, y) dxdσy.
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This result is a direct consequence of Proposition 3.5 in [9], the fact that MΓ(g) is
zero and that the function u belongs to the space H1

0 (Ω).
We now notice that

||∇uε1 −∇u− Uε1 (∇yû1)||L2(Ωε1)

≤ ||∇uε1 − Uε1 (∇u)− Uε1 (∇yû1)||L2(Ωε1) + ||Uε1 (∇u)−∇u||L2(Ωε1)

and

||∇uε2 −∇u− Uε2 (∇yu2)||L2(Ωε2) = ||∇uε2 −∇u− Uε2 (∇yû2 −∇u)||L2(Ωε2)

≤ ||∇uε2 − Uε2 (∇yû2)||L2(Ωε1) + ||Uε2 (∇u)−∇u||L2(Ωε2).

Then, we derive (43) and (44) by using convergences (39), (40), Proposition 2 and
relations (30), (31).

Remark 9. Let us notice that similar corrector results can be stated in the case
in which the matrix A depends both on x and y, as in Remark 8.

6. Conclusions. Via the periodic unfolding method, the effective thermal trans-
fer in a periodic composite material formed by two constituents, separated by an
imperfect interface where both the temperature and the flux exhibit jumps, was
analyzed. Depending on the hypotheses imposed on the jump of the flux, two dif-
ferent homogenized problems were obtained. The influence of the jumps of the flux
and of the temperature field is captured at the limit in various ways: in the homog-
enized coefficients, in the right-hand side of the homogenized problem, and in the
correctors.
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media, Bulletin Scientifique, Mathématiques et Informatique, 10 (2004), 99–106.

http://www.ams.org/mathscinet-getitem?mr=MR2466168&return=pdf
http://dx.doi.org/10.1137/080713148
http://dx.doi.org/10.1137/080713148
http://www.ams.org/mathscinet-getitem?mr=MR2287278&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2350739&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3325468&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2296803&return=pdf
http://dx.doi.org/10.1016/j.matpur.2006.11.004
http://dx.doi.org/10.1016/j.matpur.2006.11.004
http://dx.doi.org/10.1007/s00030-015-0325-2
http://dx.doi.org/10.1007/s00030-015-0325-2
http://www.ams.org/mathscinet-getitem?mr=MR2838982&return=pdf
http://dx.doi.org/10.1007/s10958-011-0443-2
http://dx.doi.org/10.1007/s10958-011-0443-2
http://www.ams.org/mathscinet-getitem?mr=MR2070449&return=pdf
http://dx.doi.org/10.1142/S0219530504000345
http://dx.doi.org/10.1142/S0219530504000345
http://www.ams.org/mathscinet-getitem?mr=MR3341369&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1963553&return=pdf
http://dx.doi.org/10.1007/PL00013849
http://www.ams.org/mathscinet-getitem?mr=MR3251915&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3380758&return=pdf
http://dx.doi.org/10.1080/00036811.2015.1105962
http://dx.doi.org/10.1080/00036811.2015.1105962
http://www.ams.org/mathscinet-getitem?mr=MR3544859&return=pdf
http://dx.doi.org/10.1137/15M1018484
http://dx.doi.org/10.1137/15M1018484
http://dx.doi.org/10.1137/15M1018484
http://www.ams.org/mathscinet-getitem?mr=MR1935019&return=pdf
http://dx.doi.org/10.1016/S0022-5096(02)00050-9
http://dx.doi.org/10.1016/S0022-5096(02)00050-9
http://www.ams.org/mathscinet-getitem?mr=MR1801696&return=pdf
http://dx.doi.org/10.1080/00036810008840857
http://dx.doi.org/10.1080/13647830.2012.734860
http://dx.doi.org/10.1080/13647830.2012.734860
http://www.ams.org/mathscinet-getitem?mr=MR2562269&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3403417&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2002395&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3443601&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2235970&return=pdf


562 RENATA BUNOIU AND CLAUDIA TIMOFTE

[35] C. Timofte, Multiscale analysis of diffusion processes in composite media, Computers and
Mathematics with Applications, 66 (2013), 1573–1580.

[36] C. Timofte, Multiscale modeling of heat transfer in composite materials, Romanian Journal

of Physics, 58 (2013), 1418–1427.

[37] C. Timofte, Multiscale analysis in nonlinear thermal diffusion problems in composite struc-

tures, Cent. Eur. J. Phys., 8 (2010), 555–561.

Received for publication December 2015.

E-mail address: renata.bunoiu@univ-lorraine.fr

E-mail address: claudia.timofte@g.unibuc.ro

http://www.ams.org/mathscinet-getitem?mr=MR3111941&return=pdf
http://dx.doi.org/10.1016/j.camwa.2012.12.003
http://dx.doi.org/10.2478/s11534-009-0141-6
http://dx.doi.org/10.2478/s11534-009-0141-6
mailto:renata.bunoiu@univ-lorraine.fr
mailto:claudia.timofte@g.unibuc.ro

	1. Introduction
	2. Setting of the problem
	3. The periodic unfolding method for a two-component domain
	4. Homogenization results
	5. Corrector results
	6. Conclusions
	Acknowledgments
	REFERENCES

