[1]
|
R. Carlson, Boundary value problems for infinite metric graphs, Analysis on Graphs and Its Applications, PSPM, 77 (2008), 355-368. doi: 10.1090/pspum/077/2459880
|
[2]
|
E. A. Coddington and R. Carlson, Linear Ordinary Differential Equations, SIAM, 1997. doi: 10.1137/1.9781611971439
|
[3]
|
F. Chung, Spectral Graph Theory, American Mathematical Society, Providence, 1997.
|
[4]
|
V. Colizza, R. Pastor-Satorras and A. Vespignani, Reaction-diffusion processes and metapopulation models in heterogeneous networks, Nature Physics, 3 (2007), 276-282. doi: 10.1038/nphys560
|
[5]
|
E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1990.
|
[6]
|
E. B. Davies, Large deviations for heat kernels on graphs, J. London Math. Soc. (2), 47 (1993), 65-72. doi: 10.1112/jlms/s2-47.1.65
|
[7]
|
R. Diestel, Graph Theory, Springer, 2005.
|
[8]
|
J. Dodziuk, Elliptic operators on infinite graphs, in Analysis, Geometry and Topology of Elliptic Operators, World Sci. publ., (2006), 353-368.
|
[9]
|
P. Doyle and J. Snell, Random Walks and Electrical Networks, Mathematical Association of America, Washington, D.C., 1984.
|
[10]
|
P. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Springer-Verlag, 1979.
|
[11]
|
A. Georgakopoulos, Graph topologies induced by edge lengths, Discrete Mathematics, 311 (2011), 1523-1542. doi: 10.1016/j.disc.2011.02.012
|
[12]
|
S. Haeseler, M. Keller, D. Lenz and R. Wojciechowski, Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions, J. Spectral Theory, 2 (2012), 397-432.
|
[13]
|
P. Hartman, Ordinary Differential Equations, Wiley, 1973.
|
[14]
|
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, 1981.
|
[15]
|
J. Hocking and G. Young, Topology, Addison-Wesley, 1961.
|
[16]
|
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1995.
|
[17]
|
M. Keeling and K. Eames, Networks and epidemic models, Journal of the Royal Society Interface, 2 (2005). doi: 10.1098/rsif.2005.0051
|
[18]
|
M. Keller and D. Lenz, Unbounded Laplacians on graphs: basic spectral properties and the heat equation, Math. Model. Nat. Phenom., 5 (2010), 198-224. doi: 10.1051/mmnp/20105409
|
[19]
|
P. Lax, Functional Analysis, John Wiley & Sons, 2002.
|
[20]
|
T. Liggett, Continuous Time Markov Processes, American Mathematical Society, Providence, 2010.
|
[21]
|
preprint.
|
[22]
|
D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, 2014.
|
[23]
|
J. Murray, Mathematical Biology I: An Introduction, Springer, New York, 2002.
|
[24]
|
J. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Springer, New York, 2003.
|
[25]
|
M. Newman, A. Barabasi and D. Watts, The Structure and Dynamics of Networks, Princeton University Press, 2006.
|
[26]
|
M. Newman, Spread of epidemic disease on networks, Physical Review E, 66 (2002). doi: 10.1103/PhysRevE.66.016128
|
[27]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1
|
[28]
|
J. Ramirez, Population persistence under advection-diffusion in river networks, Journal of Mathematical Biology, 65 (2012), 919-942. doi: 10.1007/s00285-011-0485-6
|
[29]
|
H. Royden, Real Analysis, Macmillan, New York, 1988.
|
[30]
|
J. Sarhad, R Carlson and K. Anderson, Population persistence in river networks, Journal of Mathematical Biology, online, (2013). doi: 10.1007/s00285-013-0710-6
|
[31]
|
M. Yamasaki, Parabolic and hyberbolic infinite networks, Hiroshima Math. J., 7 (1977), 135-146.
|