Myopic models of population dynamics on infinite networks

  • Received: 01 November 2013 Revised: 01 June 2014
  • Primary: 34B45.

  • Reaction-diffusion equations are treated on infinite networks using semigroup methods. To blend high fidelity local analysis with coarse remote modeling, initial data and solutions come from a uniformly closed algebra generated by functions which are flat at infinity. The algebra is associated with a compactification of the network which facilitates the description of spatial asymptotics. Diffusive effects disappear at infinity, greatly simplifying the remote dynamics. Accelerated diffusion models with conventional eigenfunction expansions are constructed to provide opportunities for finite dimensional approximation.

    Citation: Robert Carlson. Myopic models of population dynamics on infinite networks[J]. Networks and Heterogeneous Media, 2014, 9(3): 477-499. doi: 10.3934/nhm.2014.9.477

    Related Papers:

    [1] Robert Carlson . Myopic models of population dynamics on infinite networks. Networks and Heterogeneous Media, 2014, 9(3): 477-499. doi: 10.3934/nhm.2014.9.477
    [2] Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco . A simple and bounded model of population dynamics for mutualistic networks. Networks and Heterogeneous Media, 2015, 10(1): 53-70. doi: 10.3934/nhm.2015.10.53
    [3] Riccardo Bonetto, Hildeberto Jardón Kojakhmetov . Nonlinear diffusion on networks: Perturbations and consensus dynamics. Networks and Heterogeneous Media, 2024, 19(3): 1344-1380. doi: 10.3934/nhm.2024058
    [4] Claudio Canuto, Anna Cattani . The derivation of continuum limits of neuronal networks with gap-junction couplings. Networks and Heterogeneous Media, 2014, 9(1): 111-133. doi: 10.3934/nhm.2014.9.111
    [5] Elisabeth Logak, Isabelle Passat . An epidemic model with nonlocal diffusion on networks. Networks and Heterogeneous Media, 2016, 11(4): 693-719. doi: 10.3934/nhm.2016014
    [6] Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
    [7] Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano . Dragging in mutualistic networks. Networks and Heterogeneous Media, 2015, 10(1): 37-52. doi: 10.3934/nhm.2015.10.37
    [8] Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond . A new model for the emergence of blood capillary networks. Networks and Heterogeneous Media, 2021, 16(1): 91-138. doi: 10.3934/nhm.2021001
    [9] Mirela Domijan, Markus Kirkilionis . Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3(2): 295-322. doi: 10.3934/nhm.2008.3.295
    [10] Luca Di Persio, Giacomo Ziglio . Gaussian estimates on networks with applications to optimal control. Networks and Heterogeneous Media, 2011, 6(2): 279-296. doi: 10.3934/nhm.2011.6.279
  • Reaction-diffusion equations are treated on infinite networks using semigroup methods. To blend high fidelity local analysis with coarse remote modeling, initial data and solutions come from a uniformly closed algebra generated by functions which are flat at infinity. The algebra is associated with a compactification of the network which facilitates the description of spatial asymptotics. Diffusive effects disappear at infinity, greatly simplifying the remote dynamics. Accelerated diffusion models with conventional eigenfunction expansions are constructed to provide opportunities for finite dimensional approximation.


    [1] R. Carlson, Boundary value problems for infinite metric graphs, Analysis on Graphs and Its Applications, PSPM, 77 (2008), 355-368. doi: 10.1090/pspum/077/2459880
    [2] E. A. Coddington and R. Carlson, Linear Ordinary Differential Equations, SIAM, 1997. doi: 10.1137/1.9781611971439
    [3] F. Chung, Spectral Graph Theory, American Mathematical Society, Providence, 1997.
    [4] V. Colizza, R. Pastor-Satorras and A. Vespignani, Reaction-diffusion processes and metapopulation models in heterogeneous networks, Nature Physics, 3 (2007), 276-282. doi: 10.1038/nphys560
    [5] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1990.
    [6] E. B. Davies, Large deviations for heat kernels on graphs, J. London Math. Soc. (2), 47 (1993), 65-72. doi: 10.1112/jlms/s2-47.1.65
    [7] R. Diestel, Graph Theory, Springer, 2005.
    [8] J. Dodziuk, Elliptic operators on infinite graphs, in Analysis, Geometry and Topology of Elliptic Operators, World Sci. publ., (2006), 353-368.
    [9] P. Doyle and J. Snell, Random Walks and Electrical Networks, Mathematical Association of America, Washington, D.C., 1984.
    [10] P. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Springer-Verlag, 1979.
    [11] A. Georgakopoulos, Graph topologies induced by edge lengths, Discrete Mathematics, 311 (2011), 1523-1542. doi: 10.1016/j.disc.2011.02.012
    [12] S. Haeseler, M. Keller, D. Lenz and R. Wojciechowski, Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions, J. Spectral Theory, 2 (2012), 397-432.
    [13] P. Hartman, Ordinary Differential Equations, Wiley, 1973.
    [14] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, 1981.
    [15] J. Hocking and G. Young, Topology, Addison-Wesley, 1961.
    [16] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1995.
    [17] M. Keeling and K. Eames, Networks and epidemic models, Journal of the Royal Society Interface, 2 (2005). doi: 10.1098/rsif.2005.0051
    [18] M. Keller and D. Lenz, Unbounded Laplacians on graphs: basic spectral properties and the heat equation, Math. Model. Nat. Phenom., 5 (2010), 198-224. doi: 10.1051/mmnp/20105409
    [19] P. Lax, Functional Analysis, John Wiley & Sons, 2002.
    [20] T. Liggett, Continuous Time Markov Processes, American Mathematical Society, Providence, 2010.
    [21] preprint.
    [22] D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Springer, 2014.
    [23] J. Murray, Mathematical Biology I: An Introduction, Springer, New York, 2002.
    [24] J. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Springer, New York, 2003.
    [25] M. Newman, A. Barabasi and D. Watts, The Structure and Dynamics of Networks, Princeton University Press, 2006.
    [26] M. Newman, Spread of epidemic disease on networks, Physical Review E, 66 (2002). doi: 10.1103/PhysRevE.66.016128
    [27] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1
    [28] J. Ramirez, Population persistence under advection-diffusion in river networks, Journal of Mathematical Biology, 65 (2012), 919-942. doi: 10.1007/s00285-011-0485-6
    [29] H. Royden, Real Analysis, Macmillan, New York, 1988.
    [30] J. Sarhad, R Carlson and K. Anderson, Population persistence in river networks, Journal of Mathematical Biology, online, (2013). doi: 10.1007/s00285-013-0710-6
    [31] M. Yamasaki, Parabolic and hyberbolic infinite networks, Hiroshima Math. J., 7 (1977), 135-146.
  • This article has been cited by:

    1. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    2. Agelos Georgakopoulos, Sebastian Haeseler, Matthias Keller, Daniel Lenz, Radosław K. Wojciechowski, Graphs of finite measure, 2015, 103, 00217824, 1093, 10.1016/j.matpur.2014.10.006
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3414) PDF downloads(82) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog