Citation: Phoebus Rosakis. Continuum surface energy from a lattice model[J]. Networks and Heterogeneous Media, 2014, 9(3): 453-476. doi: 10.3934/nhm.2014.9.453
[1] | Phoebus Rosakis . Continuum surface energy from a lattice model. Networks and Heterogeneous Media, 2014, 9(3): 453-476. doi: 10.3934/nhm.2014.9.453 |
[2] | Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879 |
[3] | Victor A. Eremeyev . Anti-plane interfacial waves in a square lattice. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004 |
[4] | Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551 |
[5] | Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005 |
[6] | Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro . Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours. Networks and Heterogeneous Media, 2018, 13(1): 1-26. doi: 10.3934/nhm.2018001 |
[7] | Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321 |
[8] | Bernd Schmidt . On the derivation of linear elasticity from atomistic models. Networks and Heterogeneous Media, 2009, 4(4): 789-812. doi: 10.3934/nhm.2009.4.789 |
[9] | Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667 |
[10] | Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026 |
[1] |
I. Bárány and D. G. Larman, The convex hull of the integer points in a large ball, Mathematische Annalen, 312 (1998), 167-181. doi: 10.1007/s002080050217
![]() |
[2] | A. Barvinok and J. E. Pommersheim, An algorithmic theory of lattice points in polyhedra, New Perspectives in Algebraic Combinatorics, 38 (1999), 91-147. |
[3] |
X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics, Arch. Rational Mech. Anal., 164 (2002), 341-381. doi: 10.1007/s00205-002-0218-5
![]() |
[4] | M. Beck and S. Robins, Computing the Continuous Discretely: Integer Point Enumeration in Polyhedra, Undergraduate Texts in Mathematics, Springer-Verlag, 2007. |
[5] |
A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems, Mathematical Models and Methods in Applied Sciences, 17 (2007), 985-1037. doi: 10.1142/S0218202507002182
![]() |
[6] | J. G. Van der Corput, Over Roosterpunten in het Platte vlak (de Beteekenis van de Methoden van Voronoi en Pfeiffer), Noordhoff, 1919. |
[7] | B. Dacorogna and C.-E Pfister, Wulff theorem and best constant in Sobolev inequality, Journal de mathématiques pures et appliquées, 71 (1992), 97-118. |
[8] |
A. Eichler, J. Hafner, J. Furthmüller and G. Kresse, Structural and electronic properties of rhodium surfaces: an ab initio approach, Surface Science, 346 (1996), 300-321. doi: 10.1016/0039-6028(95)00906-X
![]() |
[9] |
I. Fonseca, The Wulff theorem revisited, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 432 (1991), 125-145. doi: 10.1098/rspa.1991.0009
![]() |
[10] |
C. Herring, Some theorems on the free energies of crystal surfaces, Physical Review, 82 (1951), 87-93. doi: 10.1103/PhysRev.82.87
![]() |
[11] |
M. N. Huxley, Exponential sums and lattice points III, Proceedings of the London Mathematical Society, 87 (2003), 591-609. doi: 10.1112/S0024611503014485
![]() |
[12] | preprint, arXiv:math/0410522v1. |
[13] |
C. Mora-Corral, Continuum limits of atomistic energies allowing smooth and sharp interfaces in 1D elasticity, Interfaces and Free Boundaries, 11 (2009), 421-446. doi: 10.4171/IFB/217
![]() |
[14] | G. A. Pick, Geometrisches zur Zahlenlehre, Sitzenber. Lotos Naturwissen Zeitschrift (Prague), 19 (1899), 311-319 |
[15] | J. E. Reeve, On the volume of lattice polyhedra, Proc. London Math. Soc., 3 (1957), 378-395. |
[16] | P. Rosakis, Surface and Interfacial Energy in Three Dimensional Crystals, in progress, (2014). |
[17] | J. D. Sally and P. Sally, Roots to research: A vertical development of mathematical problems, American Mathematical Society, (2007). |
[18] |
A. V. Shapeev, Consistent energy-based atomistic/continuum coupling for two-body potentials in one and two dimensions, Multiscale Modeling and Simulation, 9 (2011), 905-932 doi: 10.1137/100792421
![]() |
[19] |
F. Theil, Surface energies in a two-dimensional mass-spring model for crystals, ESAIM Math. Model. Numer. Anal., 45 (2011), 873-899 doi: 10.1051/m2an/2010106
![]() |
[20] |
K.-M. Tsang, Counting lattice points in the sphere, Bull. London Math. Soc., 32 (2000), 679-688. doi: 10.1112/S0024609300007505
![]() |
1. | A. Braides, M.S. Gelli, Asymptotic analysis of microscopic impenetrability constraints for atomistic systems, 2016, 96, 00225096, 235, 10.1016/j.jmps.2016.07.016 | |
2. | Norio Inui, Upper and Lower Bounds on Infinite Summation of Pair Potential Energy between Atom and Single Graphene Sheet, 2018, 87, 0031-9015, 104001, 10.7566/JPSJ.87.104001 | |
3. | Andrea Braides, Adriana Garroni, Mariapia Palombaro, Interfacial Energies of Systems of Chiral Molecules, 2016, 14, 1540-3459, 1037, 10.1137/15M104894X | |
4. | Georgios Barmparis, Georgios Kopidakis, Ioannis Remediakis, Shape-Dependent Single-Electron Levels for Au Nanoparticles, 2016, 9, 1996-1944, 301, 10.3390/ma9040301 | |
5. | George D. Manolis, Petia S. Dineva, Tsviatko Rangelov, Dimitris Sfyris, Mechanical models and numerical simulations in nanomechanics: A review across the scales, 2021, 128, 09557997, 149, 10.1016/j.enganabound.2021.04.004 | |
6. | Georgios D Barmparis, Zbigniew Lodziana, Nuria Lopez, Ioannis N Remediakis, Nanoparticle shapes by using Wulff constructions and first-principles calculations, 2015, 6, 2190-4286, 361, 10.3762/bjnano.6.35 | |
7. | Emmanouil Pervolarakis, Georgios A. Tritsaris, Phoebus Rosakis, Ioannis N. Remediakis, Machine Learning for the edge energies of high symmetry Au nanoparticles, 2023, 00396028, 122265, 10.1016/j.susc.2023.122265 | |
8. | Shoham Sen, Yang Wang, Timothy Breitzman, Kaushik Dayal, Nonuniqueness in defining the polarization: Nonlocal surface charges and the electrostatic, energetic, and transport perspectives, 2024, 191, 00225096, 105743, 10.1016/j.jmps.2024.105743 | |
9. | A. A. Dedkova, P. Yu. Glagolev, E. E. Gusev, N. A. Dyuzhev, V. Yu. Kireev, S. A. Lychev, D. A. Tovarnov, Peculiarities of Deformation of Round Thin-Film Membranes and Experimental Determination of Their Effective Characteristics, 2024, 69, 1063-7842, 201, 10.1134/S1063784224010109 |