A nonlinear partial differential equation for the volume preserving mean curvature flow

  • Received: 01 September 2011
  • Primary: 35; Secondary: 37.

  • We analyze the evolution of multi-dimensional normal graphs over the unit sphere under volume preserving mean curvature flow and derive a non-linear partial differential equation in polar coordinates. Furthermore, we construct finite difference numerical schemes and present numerical results for the evolution of non-convex closed plane curves under this flow, to observe that they become convex very fast.

    Citation: Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow[J]. Networks and Heterogeneous Media, 2013, 8(1): 9-22. doi: 10.3934/nhm.2013.8.9

    Related Papers:

    [1] Dimitra Antonopoulou, Georgia Karali . A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8(1): 9-22. doi: 10.3934/nhm.2013.8.9
    [2] Ken-Ichi Nakamura, Toshiko Ogiwara . Periodically growing solutions in a class of strongly monotone semiflows. Networks and Heterogeneous Media, 2012, 7(4): 881-891. doi: 10.3934/nhm.2012.7.881
    [3] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171. doi: 10.3934/nhm.2017006
    [4] Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197
    [5] Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol . Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks and Heterogeneous Media, 2019, 14(1): 23-41. doi: 10.3934/nhm.2019002
    [6] Debora Amadori, Stefania Ferrari, Luca Formaggia . Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels. Networks and Heterogeneous Media, 2007, 2(1): 99-125. doi: 10.3934/nhm.2007.2.99
    [7] Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko . Sharp interface limit in a phase field model of cell motility. Networks and Heterogeneous Media, 2017, 12(4): 551-590. doi: 10.3934/nhm.2017023
    [8] Sigurd Angenent . Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow. Networks and Heterogeneous Media, 2013, 8(1): 1-8. doi: 10.3934/nhm.2013.8.1
    [9] Jin Li, Jinzheng Qu, Xibo Duan, Xiaoning Su . An image encryption algorithm based on heat flow cryptosystems. Networks and Heterogeneous Media, 2023, 18(3): 1260-1287. doi: 10.3934/nhm.2023055
    [10] Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639
  • We analyze the evolution of multi-dimensional normal graphs over the unit sphere under volume preserving mean curvature flow and derive a non-linear partial differential equation in polar coordinates. Furthermore, we construct finite difference numerical schemes and present numerical results for the evolution of non-convex closed plane curves under this flow, to observe that they become convex very fast.


    [1] N. D. Alikakos and A. Freire, The normalized mean curvature flow for a small bubble in a Riemannian manifold, J. Differential Geom., 64 (2003), 247-303.
    [2] D. C. Antonopoulou, G. D. Karali and I. M. Sigal, Stability of spheres under volume preserving mean curvature flow, Dynamics of PDE, 7 (2010), 327-344.
    [3] J. Escher and G. Simonett, A center manifold analysis for the mullins-sekerka model, J. Differential Eq., 143 (1998), 267-292. doi: 10.1006/jdeq.1997.3373
    [4] J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres, Proc. Amer. Math. Soc., 126 (1998), 2789-2796. doi: 10.1090/S0002-9939-98-04727-3
    [5] M. Gage, On an area-preserving evolution equation for plane curves, Nonlinear Problems in Geometry, D. M. DeTurck, editor, Contemp. Math., 51 (1986), AMS, Providence, 51-62. doi: 10.1090/conm/051/848933
    [6] M. Gage and R. Hamilton, The Heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96.
    [7] Z. Gang and I. M. Sigal, Neck pinching dynamics under mean curvature flow, J. Geom. Anal., 19 (2009), 36-80. doi: 10.1007/s12220-008-9050-y
    [8] M. A. Grayson, The Heat Equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.
    [9] G. Huisken, The volume preserving mean curvature flow, J. Reine Angew. Math., 382 (1987), 35-48. doi: 10.1515/crll.1987.382.35
    [10] E. Kreyszig, "Differential Geometry," Dover Publications, New York, 1991.
    [11] N. Shimakura, "Partial Differential Operators of Elliptic Type," Translations of Mathematical Monographs, 99, 1992.
    [12] M. Struwe, Geometric evolution problems. Nonlinear partial differential equations in differential geometry, IAS/Park City Math. Ser., 2, Amer. Math. Soc., Providence, RI, Park City, UT, (1992), 257-339.
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4443) PDF downloads(54) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog