Loading [Contrib]/a11y/accessibility-menu.js

Small populations corrections for selection-mutation models

  • Received: 01 March 2012 Revised: 01 August 2012
  • Primary: 35B25, 35K55, 92D15.

  • We consider integro-differential models describing the evolution of a population structured by a quantitative trait. Individuals interact competitively, creating a strong selection pressure on the population. On the other hand, mutations are assumed to be small. Following the formalism of [20], this creates concentration phenomena, typically consisting in a sum of Dirac masses slowly evolving in time. We propose a modification to those classical models that takes the effect of small populations into accounts and corrects some abnormal behaviours.

    Citation: Pierre-Emmanuel Jabin. Small populations corrections for selection-mutation models[J]. Networks and Heterogeneous Media, 2012, 7(4): 805-836. doi: 10.3934/nhm.2012.7.805

    Related Papers:

    [1] Pierre-Emmanuel Jabin . Small populations corrections for selection-mutation models. Networks and Heterogeneous Media, 2012, 7(4): 805-836. doi: 10.3934/nhm.2012.7.805
    [2] Simone Göttlich, Ute Ziegler, Michael Herty . Numerical discretization of Hamilton--Jacobi equations on networks. Networks and Heterogeneous Media, 2013, 8(3): 685-705. doi: 10.3934/nhm.2013.8.685
    [3] Filippo Santambrogio . A modest proposal for MFG with density constraints. Networks and Heterogeneous Media, 2012, 7(2): 337-347. doi: 10.3934/nhm.2012.7.337
    [4] Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243
    [5] Anya Désilles . Viability approach to Hamilton-Jacobi-Moskowitz problem involving variable regulation parameters. Networks and Heterogeneous Media, 2013, 8(3): 707-726. doi: 10.3934/nhm.2013.8.707
    [6] Paulo Amorim, Alessandro Margheri, Carlota Rebelo . Modeling disease awareness and variable susceptibility with a structured epidemic model. Networks and Heterogeneous Media, 2024, 19(1): 262-290. doi: 10.3934/nhm.2024012
    [7] Alberto Bressan, Yunho Hong . Optimal control problems on stratified domains. Networks and Heterogeneous Media, 2007, 2(2): 313-331. doi: 10.3934/nhm.2007.2.313
    [8] Henri Berestycki, Guillemette Chapuisat . Traveling fronts guided by the environment for reaction-diffusion equations. Networks and Heterogeneous Media, 2013, 8(1): 79-114. doi: 10.3934/nhm.2013.8.79
    [9] Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315
    [10] Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco . A simple and bounded model of population dynamics for mutualistic networks. Networks and Heterogeneous Media, 2015, 10(1): 53-70. doi: 10.3934/nhm.2015.10.53
  • We consider integro-differential models describing the evolution of a population structured by a quantitative trait. Individuals interact competitively, creating a strong selection pressure on the population. On the other hand, mutations are assumed to be small. Following the formalism of [20], this creates concentration phenomena, typically consisting in a sum of Dirac masses slowly evolving in time. We propose a modification to those classical models that takes the effect of small populations into accounts and corrects some abnormal behaviours.


    [1] "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations".
    [2] G. Barles, "Solutions de Viscosite et Équations de Hamilton-Jacobi," Collec. SMAI, Springer-Verlag, 2002.
    [3] G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result, Methods Appl. Anal., 16 (2009), 321-340.
    [4] G. Barles and B. Perthame, Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics, Recent Developments in Nonlinear Partial Differential Equations, 57-68, Contemp. Math., 439, Amer. Math. Soc., Providence, RI, (2007). doi: 10.1090/conm/439/08463
    [5] R. Bürger and I. M. Bomze, Stationary distributions under mutation-selection balance: structure and properties, Adv. Appl. Prob., 28 (1996), 227-251. doi: 10.2307/1427919
    [6] A. Calsina and S. Cuadrado, Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics, J. Math. Biol., 48 (2004), 135-159. doi: 10.1007/s00285-003-0226-6
    [7] J. A. Carrillo, S. Cuadrado and B. Perthame, Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model, Math. Biosci., 205 (2007), 137-161. doi: 10.1016/j.mbs.2006.09.012
    [8] N. Champagnat, A microscopic interpretation for adaptive dynamics trait substitution sequence models, Stoch. Proc. Appl., 116 (2006), 1127-1160. doi: 10.1016/j.spa.2006.01.004
    [9] N. Champagnat, R. Ferrière and G. Ben Arous, The canonical equation of adaptive dynamics: A mathematical view, Selection, 2 (2001), 71-81.
    [10] N. Champagnat, R. Ferrière and S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution, Stoch. Models, 24 (2008), 2-44. doi: 10.1080/15326340802437710
    [11] N. Champagnat and P.-E. Jabin, The evolutionary limit for models of populations interacting competitively via several resources, J. Differential Equations 251 (2011), 176-195. doi: 10.1016/j.jde.2011.03.007
    [12] N. Champagnat, P.-E. Jabin and G. Raoul, Convergence to equilibrium in competitive Lotka-Volterra and chemostat systems, C. R. Math. Acad. Sci. Paris, 348 (2010), 1267-1272. doi: 10.1016/j.crma.2010.11.001
    [13] N. Champagnat and S. Méléard, Polymorphic evolution sequence and evolutionary branching, To appear in Probab. Theory Relat. Fields (published online, 2010). doi: 10.1007/s00440-010-0292-9
    [14] M. G. Crandall and P.-L. Lions, Users guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 167.
    [15] R. Cressman and J. Hofbauer, Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics, Theor. Pop. Biol., 67 (2005), 47-59.
    [16] L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations, Commun. Math. Sci., 6 (2008), 729-747.
    [17] U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612. doi: 10.1007/s002850050022
    [18] O. Diekmann, A beginner's guide to adaptive dynamics. In Mathematical modelling of population dynamics, Banach Center Publ., 63, 47-86, Polish Acad. Sci., Warsaw, (2004).
    [19] O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory, J. Math. Biol., 43 (2001), 157-189. doi: 10.1007/s002850170002
    [20] O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67 (2005), 257-271.
    [21] S. Genieys, N. Bessonov and V. Volpert, Mathematical model of evolutionary branching, Math. Comput. Modelling, 49 (2009), 2109-2115. doi: 10.1016/j.mcm.2008.07.018
    [22] S. A. H. Geritz, J. A. J. Metz, E. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78 (1997), 2024-2027.
    [23] S. A. H. Geritz, E. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12 (1998), 35-57.
    [24] M. Gyllenberg and G. Meszéna, On the impossibility of coexistence of infinitely many strategies, J. Math. Biol., 50 (2005), 133-160. doi: 10.1007/s00285-004-0283-5
    [25] J. Hofbauer and R. Sigmund, Adaptive dynamics and evolutionary stability, Applied Math. Letters, 3 (1990), 75-79. doi: 10.1016/0893-9659(90)90051-C
    [26] P. E. Jabin and G. Raoul, Selection dynamics with competition, J. Math. Biol., 63 (2011), 493-517. doi: 10.1007/s00285-010-0370-8
    [27] A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, 36 (2011), 1071-1098. doi: 10.1080/03605302.2010.538784
    [28] S. Méléard, Introduction to stochastic models for evolution, Markov Process. Related Fields, 15 (2009), 259-264.
    [29] S. Méléard and V. C. Tran, Trait substitution sequence process and canonical equation for age-structured populations, J. Math. Biol., 58 (2009), 881-921. doi: 10.1007/s00285-008-0202-2
    [30] J. A. J. Metz, R. M. Nisbet and S. A. H. Geritz, How should we define 'fitness' for general ecological scenarios?, Trends in Ecology and Evolution, 7 (1992), 198-202.
    [31] J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. A. J. Jacobs and J. S. van Heerwaarden, Adaptive Dynamics, a geometrical study of the consequences of nearly faithful reproduction, in "Stochastic and Spatial Structures of Dynamical Systems" (eds. S. J. van Strien & S. M. Verduyn Lunel), North Holland, Amsterdam, (1996), 183-231.
    [32] Submitted.
    [33] B. Perthame and M. Gauduchon, Survival thresholds and mortality rates in adaptive dynamics: Conciliating deterministic and stochastic simulations, IMA Journal of Mathematical Medicine and Biology, to appear (published online, 2009). doi: 10.1093/imammb/dqp018
    [34] B. Perthame and S. Génieys, Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit, Math. Model. Nat. Phenom., 2 (2007), 135-151. doi: 10.1051/mmnp:2008029
    [35] G. Raoul, Long time evolution of populations under selection and rare mutations, Acta Applicandae Mathematica, 114 (2011), 114. doi: 10.1007/s10440-011-9603-0
    [36] F. Yu, Stationary distributions of a model of sympatric speciation, Ann. Appl. Probab., 17 (2007), 840-874. doi: 10.1214/105051606000000916
  • This article has been cited by:

    1. L. Gibelli, A. Ełaiw, M. A. Alghamdi, A. M. Althiabi, Heterogeneous population dynamics of active particles: Progression, mutations, and selection dynamics, 2017, 27, 0218-2025, 617, 10.1142/S0218202517500117
    2. Pierre-Emmanuel Jabin, Alexey Miroshnikov, Robin Young, Cellulose biodegradation models; an example of cooperative interactions in structured populations, 2017, 51, 0764-583X, 2289, 10.1051/m2an/2017021
    3. Nicola Bellomo, Ahmed Elaiw, Abdullah M. Althiabi, Mohammed Ali Alghamdi, On the interplay between mathematics and biology, 2015, 12, 15710645, 44, 10.1016/j.plrev.2014.12.002
    4. Pierre-Emmanuel Jabin, Raymond Strother Schram, Selection-Mutation dynamics with spatial dependence, 2023, 176, 00217824, 1, 10.1016/j.matpur.2023.06.001
    5. Hugo Martin, Measure framework for the pure selection equation: global well posedness and numerical investigations, 2023, 12, 2102-5754, 155, 10.5802/msia.36
    6. Nicolas Champagnat, Sylvie Méléard, Sepideh Mirrahimi, Viet Chi Tran, Filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations, 2023, 10, 2270-518X, 1247, 10.5802/jep.244
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3641) PDF downloads(92) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog