Citation: Filippo Santambrogio. A modest proposal for MFG with density constraints[J]. Networks and Heterogeneous Media, 2012, 7(2): 337-347. doi: 10.3934/nhm.2012.7.337
[1] | L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246. |
[2] | L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. |
[3] |
J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393. doi: 10.1007/s002110050002
![]() |
[4] |
G. Buttazzo, C. Jimenez and E. Oudet, An optimization problem for mass transportation with congested dynamics, SIAM J. Control Optim., 48 (2009), 1961-1976. doi: 10.1137/07070543X
![]() |
[5] | G. Dal Maso, "An Introduction to $\Gamma-$Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. |
[6] | E. De Giorgi, New problems on minimizing movements, in "Boundary Value Problems for PDE and Applications" (eds. C. Baiocchi and J. L. Lions), RMA Res. Notes Appl. Math., 29, Masson, Paris, (1993), 81-98. |
[7] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359
![]() |
[8] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.018
![]() |
[9] | J.-M. Lasry and P.-L. Lions, Mean-field games, Japan. J. Math, 2 (2007), 229-260. |
[10] |
B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Mat. Mod. Meth. Appl. Sci., 20 (2010), 1787-1821. doi: 10.1142/S0218202510004799
![]() |
[11] | B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling, Net. Het. Media, 6 (2011), 485-519. |
[12] | B. Maury and J. Venel, "Handling of Contacts in Crowd Motion Simulations," Traffic and Granular Flow, Springer, 2007. |
[13] |
R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179. doi: 10.1006/aima.1997.1634
![]() |
[14] |
F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. doi: 10.1081/PDE-100002243
![]() |
[15] |
S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Disc. Cont. Dyn. Systems, 31 (2011), 1427-1451. doi: 10.3934/dcds.2011.31.1427
![]() |
[16] | C. Villani, "Topics in Optimal Transportation," Grad. Stud. Math., 58, AMS, Providence, RI, 2003. |
[17] | C. Villani, "Optimal Transport. Old and New," Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009. |