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Abstract. We consider a typical problem in Mean Field Games: the conges-

tion case, where in the cost that agents optimize there is a penalization for
passing through zones with high density of agents, in a deterministic frame-

work. This equilibrium problem is known to be equivalent to the optimization

of a global functional including an Lp norm of the density. The question arises
as to produce a similar model replacing the Lp penalization with an L∞ con-

straint, but the simplest approaches do not give meaningful definitions. Taking

into account recent works about crowd motion, where the density constraint
ρ ≤ 1 was treated in terms of projections of the velocity field onto the set of

admissible velocity (with a constraint on the divergence) and a pressure field

was introduced, we propose a definition and write a system of PDEs including
the usual Hamilton-Jacobi equation coupled with the continuity equation. For

this system, we analyze an example and propose some open problems.

1. Introduction. The goal of this paper, as well as that of the talk that the author
gave at the workshop in Rome, is to present an idea to define a Mean Field Game
(and to write down the corresponding coupled system of PDEs) when the moving
density is subject to a congestion constraint, i.e. it cannot go beyond a fixed value
standing for the maximal compression of the agents. We will see that this is not
completely evident, but recalls what is done in some papers on “hard” congestion
for crowd motion. In the same papers, the lack of strategical issues in the movement
of the agents was perceived as a drawback, which motivates the definition of this
new model.

In the next section we will quickly review the existing models for non-strategic
crowd motion and for deterministic Mean Field Games with density penalizations.
Later on, in Section 3, we will explain how to glue these ideas so as to put constraints
instead of penalizations and write down an MFG system. These systems usually
couple a continuity equation and a Hamilton-Jacobi equation in the unknowns ρ
(density) and ϕ (value function), but in this case a third unknown will appear,
the pressure p, and the system will be complemented with some conditions on the
pressure. Unfortunately, no result is available right now on this system, and Section
4 will be devoted to examples and open questions, in particular those arising from
the comparison with the penalized models.
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2. About the existing models for collective motion under congestion ef-
fects. We review in this section the models that are the closest to the one we look
for. First we describe a model for crowd motion where the key point is the con-
straint ρ ≤ 1, but no strategical issue or equilibrium condition is present; then we
pass to a sketchy description of Mean Field Games with penalization of high den-
sities. We will conclude with a naive, and wrong, idea to replace this penalization
with a constraint.

2.1. Crowd motion with density constraints. Many models for pedestrian
motion are based on the idea that individual slow down when the density of the
crowd is too high around them. This correspond to saying that their speed is (or
is influenced by) a decreasing function of the density ρ. This is what is sometimes
called “soft congestion”.

A more drastic viewpoint is the one presented by Maury and Venel in [12], where
the idea is that particles can move as they want as far as they are not too dense, but,
if a density constraint is saturated, then their spontaneous velocity field u could be
impossible and would be abruptly modified into another field v, less concentrating
and typically slower. The main assumption of such a model is that v is the projection
of u onto the cone of admissible velocities, i.e. those that infinitesimally preserve
the constraint. Maury and Venel were concerned with the discrete (microscopic)
case, where individuals are represented by small disks. The density constraint is
interpreted as a non-superposition constraint: particles cannot overlap, but as soon
as they are not in touch their motion is unconstrained. When they touch, the set
of admissible velocities restricts to those that increase the distance of every pair of
particles in contact.

Later on, a continuous (macroscopic) model has also been established in [10] (see
also [11] for the latest developments and a micro-macro comparison).

• The particles population is described by a probability density ρ ∈ P(Ω);
• the non-overlapping constraint is replaced by the condition that ρ belongs to

the set K = {ρ ∈ P(Ω) : ρ ≤ 1} (where ρ denotes, by abuse of notation at
the same time the probability and its density, since anyway we only consider
absolutely continuous measures);

• for every time t, we consider ut : Ω → Rd a vector field, possibly depending
on ρ;

• for every density ρ we have a set of admissible velocities, characterized by the
sign of the divergence on the saturated region {ρ = 1}: this set is given by
adm(ρ) =

{
v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}

}
;

• we consider the projection P , which is either the projection in L2(Ld) or
in L2(ρ) (this will turn out to be the same, since the only relevant zone is
{ρ = 1});

• we solve the equation

∂tρt +∇ ·
(
ρt
(
Padm(ρt)[ut]

))
= 0. (1)

Equation (1) is motivated by the fact that the equation satisfied by the evolution
of a density ρ when each particle follows the velocity field v is exactly the continuity
equation ∂tρt +∇ ·

(
ρtvt

)
= 0 (with v · n = 0 on ∂Ω, so that the density does not

exit Ω). Here we only insert the fact that v is the projection of u.
The main difficulty is the fact that the vector field vt = Padm(ρt)[ut] is neither

regular (since it is obtained as an L2 projection, and may only be expected to be
L2 a priori), nor it depends regularly on ρ.
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Anyway, we need to make a bit more precise the definitions above. First, we
stress that the continuity equation ∂tρ+∇ ·

(
ρv
)

= 0 is to be intended in the weak
sense:

for all ψ ∈ C1(Ω), t 7→
∫

Ω

ψdρt is C0,1 and, for a.e. t
d

dt

∫
Ω

ψdρt =

∫
Ω

∇ψ · vtdρt.

(2)
Moreover, also the divergence of vector fields which are only supposed to be L2 is
to be defined in a weak sense, and to do that it is more convenient to give a better
description of adm(ρ) by duality:

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p ∈ H1(Ω) : p ≥ 0, p(1− ρ) = 0

}
.

In this way we characterize v = Padm(ρ)[u] through

u = v +∇p, v ∈ adm(ρ),

∫
v · ∇p = 0,

p ∈ press(ρ) := {p ∈ H1(Ω), p ≥ 0, p(1− ρ) = 0},

where press(ρ) is the space of functions p used as test functions in the dual definition
of adm(ρ). They play the role of pressures affecting the movement. The two
cones ∇press(ρ) and adm(ρ) are orthogonal cones and this allows for an orthogonal
decomposition u = v +∇p. This also gives the alternative expression of Equation
(1), i.e.

∂tρ+∇ ·
(
ρ(u−∇p)

)
= 0; p ≥ 0, p(1− ρ) = 0. (3)

We stress the fact that the orthogonality condition
∫
v ·∇p = 0 is no more necessary

and is a consequence of the continuity equation. This may be informally seen in
the following way. Fix a time t0 and notice that∫

pt0dρt0 =

∫
pt0 ≥

∫
pt0dρt

which means that the function t 7→
∫
pt0dρt is maximal at t = t0. By differentiating

and using (2), we get

0 =

∫
∇pt0 · vt0dρt0 =

∫
∇pt0 · vt0

(this proof is only formal because nothing guarantees that t 7→
∫
pt0dρt is differen-

tiable at t = t0, but this can be fixed and it is possible to obtain
∫
∇pt · vt = 0 for

a.e. t).
As we said, this PDE is particularly difficult to analyze because of the lack of

regularity of v, and the main tools to prove at least existence of a solution lie in
the use of Optimal Transport and Wasserstein distances. We will not give here
details on these topics, which are quite well known now and are not crucial for the
subsequent parts of the paper. The interested reader may refer to [2, 16, 17]. We
will only describe here how Optimal Transport enters the game in the case where
the spontaneous velocity u is given by the gradient of a given function that agents
want to minimize: u = −∇D.

Actually, it happens that in this case, Equation (1), may be seen as the gradient
flow of a functional F with respect to the Wasserstein distance W2 (which is the
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distance on the set P(Ω) induced by the minimal value of the optimal transport
problem for the quadratic cost |x− y|2). The functional that we need to consider is

F (ρ) =

{∫
D(x)dρ if ρ ∈ K,

+∞ if ρ /∈ K,

where, again, K = {ρ ∈ P(Ω) : ρ ≤ 1}. To explain what a gradient flow is, let us
only say that it is the equation that rules an evolution where ρ0 is given, and ρt
moves by selecting at every time the direction that lets the quantity F (ρt) decrease
as fast as possible. In particular this may be seen if one discretizes in time the
problem, getting an iterative method. We fix a time step τ > 0, take ρτ0 = ρ0 and
at every step we find a new density through

ρτk+1 ∈ argmin
ρ

F (ρ) +
W 2

2 (ρ, ρτk)

2τ
= argmin

ρ∈K

∫
D(x)dρ+

W 2
2 (ρ, ρτk)

2τ
.

Then, by doing it for smaller and smaller time steps τ and letting τ → 0, one recovers
a curve of probabilities (continuous for the W2 distance) and can prove that it is a
solution of (1). This follows the abstract ideas of De Giorgi and Ambrosio, see [6, 1],
which are meant for general metric spaces (see also [2]). When they are applied to
the case of the Wasserstein distance they allow to obtain evolutionary PDEs, as it
has been done first in [7] for the Heat and Fokker-Plank equations.

An interesting point here is that the constraint ρ ∈ K may be seen as a limit of
Lm penalizations as m→ +∞. Indeed, one has

lim
m→+∞

1

m

∫
ρm = lim

m→+∞

1

m
||ρ||mLm =

{
0 if ||ρ||L∞ ≤ 1, i.e. ρ ∈ K
+∞ otherwise.

This means that the functional F may be approximated, as m→∞ with the func-
tionals Fm defined by Fm(ρ) =

∫
D(x)ρ(x)dx+ 1

m

∫
ρ(x)mdx. The precise meaning

of this approximation is to be read in terms of Γ−convergence (see [5]), and the
applications of Γ−convergence to the corresponding gradient flows are presented in
[15]. This penalized counterpart will be the starting point for the next subsection.
Here we only stress that the Gradient flow of the functional Fm gives the well known
porous media equations (see [14])

∂tρ−∇ ·
(
ρ∇D

)
− m− 1

m
∆
(
ρm
)

= 0.

2.2. Mean Field Games with congestion and density penalization. Let
us give a quick and informal presentation of the equations of Mean Field Games
under congestion effects. As we said in the introduction, we will only consider the
deterministic case (i.e. there will be no stochastic part in the evolution of the agents
and we will use deterministic optimal control theory and not stochastic control).
The reader may refer to [8, 9] and to the rest of this special issue; the presentation
of the subject that is provided here does not want to be exhaustive but only to
address the features of the problem that we need in the sequel.

Suppose that a population of agents may evolve in time, each agent following
trajectories of the controlled equation

y′(t) = f(t, y(y), α(t)), t ∈ [0, T ] (4)
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α : [0, T ] → Rn being a control that every agent may choose. At each time t, the
goal of each agent is to maximize the payoff

−
∫ T

t

(
|α(s)|2

2
+ g(ρ(s, y(s)))

)
ds+ Φ(y(T )), (5)

where g is a given increasing function. This means that α is the effort that every
agent makes to move in the desired direction, and he pays for it (for simplicity, we
take a quadratic cost), that its position depends on α through the equation (4),
and that he tries to optimize the final payoff Φ but he also pays for the densities
of the regions he passes by. In particular agents would like to avoid crowded areas.
At this first step the density ρ(t, x) is supposed to be a given function. Yet, the
MFG problem is an equilibrium problem: given the initial density ρ0, find a time-
dependent family of densities ρt such that, when every agent selects its optimal
trajectory so as to optimize (5), the density realized by these optimal trajectories
at time t are exactly ρt.

One can study the optimal control problem given by (4) and (5) by means of its
value function

ϕ(t, x) = sup−
∫ T

t

(
|α(s)|2

2
+ g(ρ(s, y(s)))

)
ds+ Φ(y(T )) :

y(t) = x, y′(s) = f(s, y(s), α(s)).

It is well-known from optimal control theory that ϕ satisfies the Hamilton-Jacobi-
Bellmann equation (in the viscosity sense)

∂tϕ(t, x) +H(t, x,∇ϕ(t, x)) = 0, ϕ(T, x) = Φ(x),

where the Hamiltonian H is defined through

H(t, x, ξ) = sup
α

ξ · f(t, x, α)− |α|
2

2
− g(ρt(x)). (6)

Moreover, it is also well-known that in the control problem, for every (t, x), the
optimal choice of α(t) so as to optimize the criterion (5) starting from x at time t is
the control α which maximizes in the definition of H given in (6) for ξ = ∇ϕ(t, x),

i.e. which maximizes ∇ϕ(t, x) · f(t, x, α)− |α|
2

2 .
This gives a system of two coupled equations, since ϕ solves an HJB equation

where ρ appears in the Hamiltonian, and ρ evolves according to a continuity equa-
tion ∂tρ + ∇ · (ρv) = 0, where the vector field v(t, x) is given by f(t, x, αt,x) and
the dependence of αt,x on (t, x) passes through ∇ϕ(t, x). To be more precise, we
can give an explicit example, in the case f(t, x, α) = α (this case corresponds to
a classical calculus of variations problem, but we will still use the optimal control
formalism since we will need to switch back to true control problems in a while).
In such a case we can compute explicitly the Hamiltonian H(t, x, ξ) thus getting

H(t, x, ξ) = |ξ|2
2 − g(ρt(x)) and the optimal α in the definition of H(t, x, ξ) turns

out to be exactly ξ. Hence, the vector field to be put in the continuity equation is
exactly ∇ϕ. This gives the system

∂tϕ+ |∇ϕ|2
2 − g(ρ) = 0,

∂tρ+∇ · (ρ∇ϕ) = 0,

ϕ(T, x) = Φ(x), ρ(0, x) = ρ0(x),

(7)
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where the first equation is satisfied in the viscosity sense and the second in the
distributional sense.

In this case, it is also known that a solution of this system (i.e. an equilibrium in
the Mean Field Game) may be obtained by minimizing a suitable global functional
(obviously, up to a change of sign, we could also express it as a maximization).
Actually, one can solve

min

∫ T

0

∫
Ω

(
1

2
|α(t, x)|2ρ(t, x) +G(ρ(t, x))

)
dxdt−

∫
Ω

Φ(x)ρ(T, x)dx (8)

among solutions (ρ, α) of the continuity equation ∂tρ + ∇ · (ρα) = 0 with initial
datum ρ(0, x) = ρ0(x). When the function G is chosen as the primitive G of g
(i.e. G′ = g, and in particular G is convex), it happens that the minimizers of
this global functional are equilibria in the sense explained above (the trajectories
that the agents chose according to these densities are such that they exactly realize
these densities). These functionals recall the functional proposed by Benamou and
Brenier [3] to give a dynamical formulation of optimal transport, or those studied
by Buttazzo, Jimenez and Oudet for density congested dynamics in [4].

It is clear that we can choose g(ρ) = ρm−1 (for m > 1), which gives G(ρ) = 1
mρ

m,
and the minimization problem in (8) tends, as m→ +∞ to

min

∫ T

0

∫
Ω

1

2
|α(t, x)|2ρ(t, x)dxdt−

∫
Ω

Φ(x)ρ(T, x)dx, (9)

the minimization being, again, performed among solutions (ρ, α) of the continuity
equation ∂tρ + ∇ · (ρα) = 0 with initial datum ρ(0, x) = ρ0(x) and satisfying the
constraint ρ(t, x) ≤ 1 a.e. In particular, the energy is not finite unless ρ0 satisfies
the constraint ρ0 ≤ 1 as well. By the way, this problem is equivalent, at least in a
convex domain Ω, to finding ρT ≤ 1 so as to minimize TW 2

2 (ρ0, ρT )−
∫

ΦdρT and
then choosing ρt as a constant speed geodesic connecting ρ0 to ρT . This comes from
the fact that the optimal curve connecting ρ0 to ρT and minimizing

∫∫
1
2 |α|

2ρdxdt
is the geodesic between these two measures in the Wasserstein space, and the set
K of measures with density bounded by 1 is known to be geodesically convex (i.e.,
if two measures belong to K, the geodesic between them stays in K as well). This
concept of convexity and the proof that K is geodesically convex come from [13].

The question arises naturally of how to define a Mean Field Game equilibrium
problem under the density constraint ρ ≤ 1 instead of the density penalization
+ρm−1.

It happens that this question is not trivial at all. Let us try the simplest defini-
tion. We say that a curve of densities ρt is an equilibrium if

• it satisfies the constraint ||ρt||L∞ ≤ 1 for all times t,
• when the agents choose their optimal trajectory, solving

max −
∫ T

t

|α(s)|2

2
ds+ Φ(y(T )), : y′(s) = α(s), y(t) = x

and respecting the constraint ρs(y(s)) ≤ 1, the density they realize at time t
is again ρt.

Yet, this definition does not make any sense (and would lead in general to non-
existence of such an equilibrium) because of this fact: this game is a non-atomic
game, where the influence of every individual is negligible; thus, every agent facing
densities ρt ≤ 1 can choose with no restrictions at all its trajectory, since he knows
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that anyway simply adding its own presence somewhere will not really change the
density and violate the constraint. This means that the trajectories that are selected
by every agent do not take into account the constraint ρ ≤ 1 and hence there is no
reason for the densities realized by these choices to satisfy ρ ≤ 1.

3. The MFG system with density constraint. The main idea of this section,
and of this “modest proposal”, is the following: use the pressure! Express the effects
of the density constraints through the existence of a non-zero pressure field.

This requires changing the definition of the equilibrium.

• We describe the situation through a pair (ρ, ᾱ) where ρt stands for the density
of the agents at time t and ᾱ(t, x) for the effort that the agent located at x at
time t makes to control his movement. We require that (ρ, ᾱ) satisfies

∂tρt +∇ ·
(
ρt
(
Padm(ρt)[ᾱt]

))
= 0,

which means that ρ is advected by the projection of this effort vector field.
• Considering the projection of ᾱt onto adm(ρt) a pressure pt appears such that

Padm(ρt)[ᾱt] = ᾱt −∇pt, pt ∈ press(ρt),
∫
Padm(ρt)[αt] · ∇pt = 0

(but, again, the orthogonality condition is included in the continuity equa-
tion).

• Every agent wants to optimize his own control problem where the state equa-
tion is influenced by the pressure:

max −
∫ T

t

|α(s)|2

2
ds+ Φ(y(T )), : y′(s) = α(s)−∇ps(y(s)), y(t) = x.

• The configuration (ρ, ᾱ) is said to be an equilibrium if the original effort field
ᾱ coincides with the optimal effort in this control problem and if the original
densities ρt coincide with the densities realized at time t according to these
optimal trajectories.

In order to write down the equations that correspond to such an equilibrium we
first need to compute the Hamiltonian of this control problem:

H(t, x, ξ) = sup
α

ξ · (α−∇p(t, x))− |α|
2

2
=
|ξ|2

2
− ξ · ∇p(t, x),

the optimal α in this maximization being exactly ξ. This means that the optimal
effort at (t, x) will be ∇ϕ(t, x) and that the vector field appearing in the continuity
equation will be ∇ϕ−∇p. We finally get to the MFG system

∂tϕ+ |∇ϕ|2
2 −∇ϕ · ∇p = 0,

∂tρ+∇ · (ρ(∇ϕ−∇p)) = 0,

p ≥ 0, p(1− ρ) = 0,

ϕ(T, x) = Φ(x), ρ(0, x) = ρ0(x).

(10)

It is important to notice that in this case the equilibrium may only be defined
in terms of a pair (ρ, ᾱ), and that the density only is not sufficient to describe
the configuration. The reason lies in the fact that the pressure at time t does not
depend on the density ρt only, but on the vector field that we project on adm(ρt).
This was not the case in the gradient flow framework of crowd motion in [10], since
the vector field to be projected was itself a function of ρ. This will be clearer in the
next example.
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4. An example and some open questions.

4.1. An example where nothing moves. Even if the example presented in this
section is very simple, its resolution will be quite sketchy and informal. Consider
the following situation: given the function Φ, suppose that there exists ` ∈ R such
that |{Φ > `}| = 1. We will also suppose Φ to be regular enough (in particular, to
be continuous), so that Φ = ` on ∂A. Let us set A = {Φ > `} and take ρ0 = IA,
i.e. ρ0(x) = 1 for x ∈ A and ρ0(x) = 0 for x /∈ A.

Let us try to guess the solution of (10). If instead of a density constraint we
had a power penalization, the solution would be obtained by minimization of a
global functional

∫∫
ρα2 + 1

m

∫∫
ρm −

∫
ΦdρT . Let us suppose for a while that a

similar principle holds for the L∞ constraint: we could imagine that the solution is
obtained by minimizing

∫∫
ρα2 −

∫
ΦdρT under the constraint ρ ≤ 1. This problem

has an easy solution: not moving at all! Actually, ρt = ρ0 is a solution since it
minimizes the first term (no movement, no kinetic energy) and maximizes

∫
Φdρ

among probability measures with ρ ≤ 1, since none of them can do better than ρ0,
which is already concentrated on the best points for the function Φ. This suggests
that the solution of (10) should be obtained with ρt = ρ0.

Can we conclude that the pair (ρ, ᾱ) given by ρt = ρ0 and ᾱt = 0 is an
equilibrium? the answer is for sure not. Why? just because if the effort vector
field is identically zero, then its projection will also be zero, and the pressure as
well. This means that we would have ∇pt = 0, i.e. the agents could move as
if there were no constraints. Hence, every agent would maximize his own payoff

−
∫ T
t
|α(s)|2

2 ds + Φ(y(T )), : y(t) = x, y′(s) = α(s), and in general the solution is
not α = 0.

Yet, even if we did not find an equilibrium so far, we can improve our guess. We
can claim that the equilibrium configuration is such that everybody wants to move,
but nobody manages to do it. This means ρt = ρ0 but ᾱ 6= 0. It is indeed possible
that the optimal effort ᾱ is exactly compensated by the pressure effects. Let us
look for a solution of (10) of this form.

We need to impose ∇ϕ = ∇p on [0, T ] × A (where, again, A = {Φ > l}). This
is sufficient to satisfy the continuity equation with a static measure ρt = ρ0. If we
consider that p must vanish where ρ < 1, this imposes p = 0 on [0, T ]×Ac. Hence
we get the (strange) equation satisfied (at least formally) by the value function ϕ:

∂tϕ+
|∇ϕ|2

2
= 0 on [0, T ]×Ac and ∂tϕ−

|∇ϕ|2

2
= 0 on [0, T ]×A. (11)

We need to solve this equation complemented by its final condition ϕ(T, x) = Φ(x).
Once we find ϕ, using ∇ϕ = ∇p on [0, T ]×A, we need to deduce a pressure p and
to prove that it is actually a pressure, i.e. p ≥ 0 and p(1− ρ) = 0.

An informal way to solve (11) is the following. For simplicity, let us suppose
` = 0 (which is always possible up to adding a constant to Φ). Consider the

function Φ̃ = −|Φ| and define

ϕ̃(t, x) = sup−
∫ T

t

|α(s)|2

2
ds+ Φ̃(y(T )) : y(t) = x, y′(s) = α(s).

Let us suppose that this value function is regular: it must satisfy

∂tϕ̃+
|∇ϕ̃|2

2
= 0, ϕ̃(T, x) = Φ̃(x), ϕ̃ ≤ 0, ϕ̃(t, x) = 0 for x ∈ ∂A.
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The last conditions are easy to check: we see from the definition and from Φ̃ ≤ 0
that we have ϕ̃ ≤ 0; yet, the constant curve y(s) = x gives ϕ̃(t, x) = 0, provided

Φ̃(x) = 0, which is the case for x ∈ ∂A. After that one can define

ϕ = (1− 2IA)ϕ̃,

which means ϕ = ϕ̃ outside A and ϕ = −ϕ̃ on A. It is possible to check that (at
least in a formal way) ϕ solves (11) and p is an admissible pressure.

Obviously in the analysis of this example we just provided a solution, with no
guarantee that it is the unique one.

4.2. Some open questions. As we said in the introduction, in this paper we only
present System (10), its motivations and connections with other problems, but we
are not able to prove any result on it. In particular existence, uniqueness and
well-posedness in general are open questions.

The usual conditions guaranteeing uniqueness in MFG are based on sign condi-
tions such as

d

dt

∫
(ϕ1 − ϕ2)d(ρ1 − ρ2) ≥ 0,

to be checked on every pair of solutions (ϕ1, ρ1), (ϕ2, ρ2). Yet, they do not seem
easy to verify here, nor to imply in a simple way uniqueness results, even if some
estimates are possible.

Hence, we ignore for the moment these uniqueness questions, and we only con-
centrate on two questions concerning the connection with the ρm penalization and
a possible variational principle.
First question: can we obtain (10) as a limit of Lm penalizations with m → ∞?
Let us be more precise. Consider the System (7), choosing g(ρ) = ρm−1 (which
corresponds to a penalization 1

m

∫
ρm in the global functional that is optimized by

the equilibrium). Obviously, in this system there is no pressure, but the question
is: is it possible to introduce fictitiously a function playing the role of the pressure,
thus obtaining a 3-tuple (ρm, ϕ̂m, p̂m) solving System (7), and then wonder if they
converge, as m→∞, to a solution (ρ, ϕ, p) of (10)?

To make an example of what we mean, we can decide to write the value function
ϕ in (7) as ϕ = ϕ̂− p̂. We will choose later how to define p. If we rewrite the first
equation of the system we have

∂tϕ̂− ∂tp̂+
1

2
|∇ϕ̂|2 −∇ϕ̂ · ∇p̂+

1

2
|∇p̂|2 − ρm−1 = 0.

This means that, if we choose p̂ satisfying{
−∂tp̂+ 1

2 |∇p̂|
2 − ρm−1 = 0,

p̂(T, x) = 0,

the two equations of the system become exactly the same as those of (10) and
ϕ̂(T, x) = Φ(x). It is natural to wonder whether the function p̂ that we just defined
has some chances to converge towards the pressure p of the limit system, and in
particular if it will satisfy, at the limit, the condition p̂ = 0 on {ρ < 1}. This is
not evident, and the only reasonable tool seems to interpret the condition −∂tp̂ +
1
2 |∇p̂|

2 − ρm−1 = 0 as a Hamilton-Jacobi equation for a control problem, thus
writing

p̂(t, x) = inf

∫ T

t

(
|α(s)|2

2
+ ρm−1(y(s))

)
ds : y(t) = x, y′(s) = α(s).
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Second question: is the equilibrium optimal in some sense? We know that for the
Lm penalization the equilibrium is also obtained if one optimizes the global cost (8).
One could think that letting m → +∞, the constrained MFG equilibrium should
solve

min

∫ T

0

∫
Ω

(
1

2
|v(t, x)|2ρ(t, x)

)
dxdt−

∫
Ω

Φ(x)ρ(T, x)dx (12)

among solutions (ρ, v) of the continuity equation ∂tρ + ∇ · (ρv) = 0 with initial
datum ρ(0, x) = ρ0(x), satisfying the constraint ρ ≤ 1. First, it is important to
notice that here we consider the true velocity field v and not the effort field α, and
we know that the equilibrium in this constrained setting cannot be expressed in
terms of (ρt, vt) only. This means that, if this variational principle is true, then one
could use it to identify the velocity field v, but would still need to decompose it into
∇ϕ−∇p. Yet, it would allow to find the curve of densities ρt.

It is an open question whether this variational principle holds or not. It holds in
the example of the previous section. To check it in full generality, one possibility
would be to use the equations of (10) to check whether the necessary conditions for
optimality are satisfied.

Actually, one can write down by duality some necessary conditions for solving
(12) under the constraint ρ ≤ 1. In order to apply duality, it is well known, from
Benamou-Brenier on ([3]), that it is convenient to use the variables (ρ, q) with q = ρv
instead of (ρ, v). This leads to the optimization problem

min
(ρ,q) : 0≤ρ≤1

∫ ∫
|q|2

2ρ
−
∫

ΦdρT + sup
χ
−
∫ ∫

∂tχdρ−
∫ ∫

∇χdq+

∫
χT dρT −

∫
χ0dρ0,

where the supremum over χ stands for the constraint given by the continuity equa-
tion. It may be dualized by interchanging min and sup and, optimizing first over q,
one finds that the optimal q is given by q = ρ∇χ and gets to

sup
χ

min
0≤ρ≤1

∫
(χT − Φ)dρT −

∫
χ0dρ0 −

∫ ∫ (
∂tχ+

1

2
|∇χ|2

)
dρ.

This allows (we skip all justifications coming from convex analysis) to write the
following optimality conditions : if (ρ, q) is optimal then there exists a function χ
such that q = ρ∇χ (and hence v = ∇χ) and

• ∂tχ + 1
2 |∇χ|

2 ≤ 0 on {ρ = 0} (but this is not restrictive, since χ may be
modified on ρ-negligible sets and still satisfy q = ρ∇χ ),

• ∂tχ+ 1
2 |∇χ|

2 ≥ 0 on {ρ = 1},
• ∂tχ+ 1

2 |∇χ|
2 = 0 on {0 < ρ < 1},

• χT − Φ ≥ 0 on {ρT = 0} (same consideration: it is not restrictive),
• χT − Φ ≤ 0 on {ρT = 1},
• χT − Φ = 0 on {0 < ρT < 1}.
The question of the optimality of the solution of (10) becomes now a question on

the conditions satisfied by its velocity field. Since we already know v = ∇ϕ −∇p,
it is sufficient to define χ = ϕ− p and investigate whether the above conditions are
satisfied or not. In particular we have

∂tχ+
1

2
|∇χ|2 = ∂tϕ+

1

2
|∇ϕ|2 −∇ϕ · ∇p− ∂tp+

1

2
|∇p|2 = −∂tp+

1

2
|∇p|2,

and the question is whether this quantity is positive on {ρ = 1} and zero on {0 <
ρ < 1}. This question seems linked to the previous one, where the limit m→ +∞
let appear exactly the condition −∂tp̂+ 1

2 |∇p̂|
2 = ρm−1.
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The conditions to be verified at time t = T are, instead, easy to check, since
(χT − Φ)(x) = ϕ(T, x) − p(T, x) − Φ(x) = −p(T, x) and we know p ≥ 0 and p = 0
on {0 < ρ < 1}.
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[8] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal , C.

R. Math. Acad. Sci. Paris, 343 (2006), 679–684.
[9] J.-M. Lasry and P.-L. Lions, Mean-field games, Japan. J. Math, 2 (2007), 229–260.

[10] B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of

gradient flow type, Mat. Mod. Meth. Appl. Sci., 20 (2010), 1787–1821.
[11] B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd

motion modeling, Net. Het. Media, 6 (2011), 485–519.

[12] B. Maury and J. Venel, “Handling of Contacts in Crowd Motion Simulations,” Traffic and
Granular Flow, Springer, 2007.

[13] R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153–179.

[14] F. Otto, The geometry of dissipative evolution equations: The porous medium equation,
Comm. Partial Differential Equations, 26 (2001), 101–174.

[15] S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applica-
tions, Disc. Cont. Dyn. Systems, 31 (2011), 1427–1451.

[16] C. Villani, “Topics in Optimal Transportation,” Grad. Stud. Math., 58, AMS, Providence,
RI, 2003.

[17] C. Villani, “Optimal Transport. Old and New,” Grundlehren der Mathematischen Wis-

senschaften, 338, Springer-Verlag, Berlin, 2009.

Received November 2011; revised March 2012.

E-mail address: filippo.santambrogio@math.u-psud.fr

http://www.ams.org/mathscinet-getitem?mr=MR1387558&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2129498&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1738163&return=pdf
http://dx.doi.org/10.1007/s002110050002
http://dx.doi.org/10.1007/s002110050002
http://www.ams.org/mathscinet-getitem?mr=MR2516195&return=pdf
http://dx.doi.org/10.1137/07070543X
http://dx.doi.org/10.1137/07070543X
http://www.ams.org/mathscinet-getitem?mr=MR1201152&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1260440&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1617171&return=pdf
http://dx.doi.org/10.1137/S0036141096303359
http://dx.doi.org/10.1137/S0036141096303359
http://www.ams.org/mathscinet-getitem?mr=MR2271747&return=pdf
http://dx.doi.org/10.1016/j.crma.2006.09.018
http://www.ams.org/mathscinet-getitem?mr=MR2295621&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2735914&return=pdf
http://dx.doi.org/10.1142/S0218202510004799
http://dx.doi.org/10.1142/S0218202510004799
http://www.ams.org/mathscinet-getitem?mr=MR2826756&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1451422&return=pdf
http://dx.doi.org/10.1006/aima.1997.1634
http://www.ams.org/mathscinet-getitem?mr=MR1842429&return=pdf
http://dx.doi.org/10.1081/PDE-100002243
http://www.ams.org/mathscinet-getitem?mr=MR2836361&return=pdf
http://dx.doi.org/10.3934/dcds.2011.31.1427
http://dx.doi.org/10.3934/dcds.2011.31.1427
http://www.ams.org/mathscinet-getitem?mr=MR1964483&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2459454&return=pdf
mailto:filippo.santambrogio@math.u-psud.fr

	1. Introduction
	2. About the existing models for collective motion under congestion effects
	2.1. Crowd motion with density constraints
	2.2. Mean Field Games with congestion and density penalization

	3. The MFG system with density constraint
	4. An example and some open questions
	4.1. An example where nothing moves
	4.2. Some open questions

	Acknowledgments
	REFERENCES

