Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients

  • Received: 01 March 2011 Revised: 01 September 2011
  • Primary: 35K58; Secondary: 35R60, 35B40, 60H15.

  • We consider a model for the propagation of a driven interface through a random field of obstacles. The evolution equation, commonly referred to as the Quenched Edwards-Wilkinson model, is a semilinear parabolic equation with a constant driving term and random nonlinearity to model the influence of the obstacle field. For the case of isolated obstacles centered on lattice points and admitting a random strength with exponential tails, we show that the interface propagates with a finite velocity for sufficiently large driving force. The proof consists of a discretization of the evolution equation and a supermartingale estimate akin to the study of branching random walks.

    Citation: Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients[J]. Networks and Heterogeneous Media, 2012, 7(1): 137-150. doi: 10.3934/nhm.2012.7.137

    Related Papers:

    [1] Patrick W. Dondl, Michael Scheutzow . Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks and Heterogeneous Media, 2012, 7(1): 137-150. doi: 10.3934/nhm.2012.7.137
    [2] Jérôme Coville, Nicolas Dirr, Stephan Luckhaus . Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Networks and Heterogeneous Media, 2010, 5(4): 745-763. doi: 10.3934/nhm.2010.5.745
    [3] Clément Cancès . On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks and Heterogeneous Media, 2010, 5(3): 635-647. doi: 10.3934/nhm.2010.5.635
    [4] Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko . Sharp interface limit in a phase field model of cell motility. Networks and Heterogeneous Media, 2017, 12(4): 551-590. doi: 10.3934/nhm.2017023
    [5] Francesca R. Guarguaglini . Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks and Heterogeneous Media, 2018, 13(1): 47-67. doi: 10.3934/nhm.2018003
    [6] Mingming Fan, Jianwen Sun . Positive solutions for the periodic-parabolic problem with large diffusion. Networks and Heterogeneous Media, 2024, 19(3): 1116-1132. doi: 10.3934/nhm.2024049
    [7] Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787
    [8] Ken-Ichi Nakamura, Toshiko Ogiwara . Periodically growing solutions in a class of strongly monotone semiflows. Networks and Heterogeneous Media, 2012, 7(4): 881-891. doi: 10.3934/nhm.2012.7.881
    [9] Vincent Renault, Michèle Thieullen, Emmanuel Trélat . Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks and Heterogeneous Media, 2017, 12(3): 417-459. doi: 10.3934/nhm.2017019
    [10] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171. doi: 10.3934/nhm.2017006
  • We consider a model for the propagation of a driven interface through a random field of obstacles. The evolution equation, commonly referred to as the Quenched Edwards-Wilkinson model, is a semilinear parabolic equation with a constant driving term and random nonlinearity to model the influence of the obstacle field. For the case of isolated obstacles centered on lattice points and admitting a random strength with exponential tails, we show that the interface propagates with a finite velocity for sufficiently large driving force. The proof consists of a discretization of the evolution equation and a supermartingale estimate akin to the study of branching random walks.


    [1] S. Brazovskii and T. Nattermann, Pinning and sliding of driven elastic systems: From domain walls to charge density waves, Adv. Phys., 53 (2004), 177-252. Availabe from: arXiv:cond-mat/0312375.
    [2] J. Coville, N. Dirr and S. Luckhaus, Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients, Networks and Heterogeneous Media, 5 (2010), 745-763.
    [3] N. Dirr, P. W. Dondl, G. R. Grimmett, A. E. Holroyd and M. Scheutzow, Lipschitz percolation, Electron. Commun. Probab., 15 (2010), 14-21.
    [4] N. Dirr, P. W. Dondl and M. Scheutzow, Pinning of interfaces in random media, Interfaces and Free Boundaries, 13 (2011), 411-421. Available from: arXiv:0911.4254.
    [5] M. Kardar, Nonequilibrium dynamics of interfaces and lines, Phys. Rep., 301 (1998), 85-112. Available from: arXiv:cond-mat/9704172. doi: 10.1016/S0370-1573(98)00007-6
    [6] L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math., 6 (1953), 167-177.
    [7] D. Siegmund, On moments of the maximum of normed partial sums, Ann. Math. Statist., 40 (1969), 527-531. doi: 10.1214/aoms/1177697720
  • This article has been cited by:

    1. T. Bodineau, A. Teixeira, Interface Motion in Random Media, 2015, 334, 0010-3616, 843, 10.1007/s00220-014-2152-4
    2. Patrick W. Dondl, Michael Scheutzow, Ballistic and sub-ballistic motion of interfaces in a field of random obstacles, 2017, 27, 1050-5164, 10.1214/17-AAP1279
    3. Patrick Dondl, Martin Jesenko, Michael Scheutzow, Infinite pinning, 2022, 54, 0024-6093, 760, 10.1112/blms.12599
    4. Luca Courte, Patrick Dondl, Ulisse Stefanelli, Pinning of interfaces by localized dry friction, 2020, 269, 00220396, 7356, 10.1016/j.jde.2020.06.005
    5. Luca Courte, Patrick Dondl, Michael Ortiz, A Proof of Taylor Scaling for Curvature-Driven Dislocation Motion Through Random Arrays of Obstacles, 2022, 244, 0003-9527, 317, 10.1007/s00205-022-01765-5
    6. Fan Chen, Ming Cui, Chenguang Zhou, A type of efficient multigrid method for semilinear parabolic interface problems, 2025, 143, 10075704, 108632, 10.1016/j.cnsns.2025.108632
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3648) PDF downloads(83) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog