G1/S transition and cell population dynamics

  • Received: 01 February 2008 Revised: 01 November 2008
  • 92D25, 92C40, 58K55.

  • In this paper we present a model connecting the state of molecular components during the cell cycle at the individual level to the population dynamic. The complexes Cyclin E/CDK2 are good markers of the cell state in its cycle. In this paper we focus on the first transition phase of the cell cycle (SG2M) where the complexe Cyclin E/CDK2 has a key role in this transition. We give a simple system of differential equations to represent the dynamic of the Cyclin E/CDK2 amount during the cell cycle, and couple it with a cell population dynamic in such way our cell population model is structured by cell age and the amount of Cyclin E/CDK2 with two compartments: cells in the G1 phase and cells in the remainder of the cell cycle (SG2M). A cell transits from the G1 phase to the S phase when Cyclin E/CDK2 reaches a threshold, which allow us to take into account the variability in the timing of G1/S transition. Then the cell passes through SG2M phases and divides with the assumption of unequal division among daughter cells of the final Cyclin E/CDK2 amount. The existence and the asymptotic behavior of the solution of the model is analyzed.

    Citation: Fadia Bekkal-Brikci, Giovanna Chiorino, Khalid Boushaba. G1/S transition and cell population dynamics[J]. Networks and Heterogeneous Media, 2009, 4(1): 67-90. doi: 10.3934/nhm.2009.4.67

    Related Papers:

    [1] Fadia Bekkal-Brikci, Giovanna Chiorino, Khalid Boushaba . G1/S transition and cell population dynamics. Networks and Heterogeneous Media, 2009, 4(1): 67-90. doi: 10.3934/nhm.2009.4.67
    [2] Ye Sun, Daniel B. Work . Error bounds for Kalman filters on traffic networks. Networks and Heterogeneous Media, 2018, 13(2): 261-295. doi: 10.3934/nhm.2018012
    [3] Shi Jin, Min Tang, Houde Han . A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface. Networks and Heterogeneous Media, 2009, 4(1): 35-65. doi: 10.3934/nhm.2009.4.35
    [4] Mamadou Sango . Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks and Heterogeneous Media, 2010, 5(2): 361-384. doi: 10.3934/nhm.2010.5.361
    [5] Vladimir Jaćimović, Aladin Crnkić . The General Non-Abelian Kuramoto Model on the 3-sphere. Networks and Heterogeneous Media, 2020, 15(1): 111-124. doi: 10.3934/nhm.2020005
    [6] Pierre Degond, Sophie Hecht, Nicolas Vauchelet . Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15(1): 57-85. doi: 10.3934/nhm.2020003
    [7] Russell Betteridge, Markus R. Owen, H.M. Byrne, Tomás Alarcón, Philip K. Maini . The impact of cell crowding and active cell movement on vascular tumour growth. Networks and Heterogeneous Media, 2006, 1(4): 515-535. doi: 10.3934/nhm.2006.1.515
    [8] Klaus-Jochen Engel, Marjeta Kramar FijavŽ . Exact and positive controllability of boundary control systems. Networks and Heterogeneous Media, 2017, 12(2): 319-337. doi: 10.3934/nhm.2017014
    [9] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009
    [10] Michiel Bertsch, Masayasu Mimura, Tohru Wakasa . Modeling contact inhibition of growth: Traveling waves. Networks and Heterogeneous Media, 2013, 8(1): 131-147. doi: 10.3934/nhm.2013.8.131
  • In this paper we present a model connecting the state of molecular components during the cell cycle at the individual level to the population dynamic. The complexes Cyclin E/CDK2 are good markers of the cell state in its cycle. In this paper we focus on the first transition phase of the cell cycle (SG2M) where the complexe Cyclin E/CDK2 has a key role in this transition. We give a simple system of differential equations to represent the dynamic of the Cyclin E/CDK2 amount during the cell cycle, and couple it with a cell population dynamic in such way our cell population model is structured by cell age and the amount of Cyclin E/CDK2 with two compartments: cells in the G1 phase and cells in the remainder of the cell cycle (SG2M). A cell transits from the G1 phase to the S phase when Cyclin E/CDK2 reaches a threshold, which allow us to take into account the variability in the timing of G1/S transition. Then the cell passes through SG2M phases and divides with the assumption of unequal division among daughter cells of the final Cyclin E/CDK2 amount. The existence and the asymptotic behavior of the solution of the model is analyzed.


  • This article has been cited by:

    1. Ricardo Borges, Àngel Calsina, Sílvia Cuadrado, Oscillations in a molecular structured cell population model, 2011, 12, 14681218, 1911, 10.1016/j.nonrwa.2010.12.007
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3720) PDF downloads(92) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog