Boltzmann maps for networks of chemical reactions and the multi-stability problem

  • Received: 01 March 2008 Revised: 01 April 2009
  • Primary: 92C40, 92C05; Secondary: 82C31, 92B05.

  • Boltzmann Maps are a class of discrete dynamical systems that may be used in the study of complex chemical reaction processes. In this paper they are generalized to open systems allowing the description of non-stoichiometrically balanced reactions with unequal reaction rates. We show that they can be widely used to describe the relevant dynamics, leading to interesting insights on the multi-stability problem in networks of chemical reactions. Necessary conditions for multistability are thus identified. Our findings indicate that the dynamics produced by laws like the mass action law, can hardly produce multistable phenomena. In particular, we prove that they cannot do it in a wide range of chemical reactions.

    Citation: Andrea Picco, Lamberto Rondoni. Boltzmann maps for networks of chemical reactions and the multi-stability problem[J]. Networks and Heterogeneous Media, 2009, 4(3): 501-526. doi: 10.3934/nhm.2009.4.501

    Related Papers:

    [1] Andrea Picco, Lamberto Rondoni . Boltzmann maps for networks of chemical reactions and the multi-stability problem. Networks and Heterogeneous Media, 2009, 4(3): 501-526. doi: 10.3934/nhm.2009.4.501
    [2] Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
    [3] Yuhua Zhu . A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14(4): 677-707. doi: 10.3934/nhm.2019027
    [4] Michael Herty, Lorenzo Pareschi, Sonja Steffensen . Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699
    [5] Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou . Influence prediction for continuous-time information propagation on networks. Networks and Heterogeneous Media, 2018, 13(4): 567-583. doi: 10.3934/nhm.2018026
    [6] Karoline Disser, Matthias Liero . On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks and Heterogeneous Media, 2015, 10(2): 233-253. doi: 10.3934/nhm.2015.10.233
    [7] Monique Chyba, Benedetto Piccoli . Special issue on mathematical methods in systems biology. Networks and Heterogeneous Media, 2019, 14(1): i-ii. doi: 10.3934/nhm.20191i
    [8] Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197
    [9] Diandian Huang, Xin Huang, Tingting Qin, Yongtao Zhou . A transformed $ L1 $ Legendre-Galerkin spectral method for time fractional Fokker-Planck equations. Networks and Heterogeneous Media, 2023, 18(2): 799-812. doi: 10.3934/nhm.2023034
    [10] Ioannis Markou . Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12(4): 683-705. doi: 10.3934/nhm.2017028
  • Boltzmann Maps are a class of discrete dynamical systems that may be used in the study of complex chemical reaction processes. In this paper they are generalized to open systems allowing the description of non-stoichiometrically balanced reactions with unequal reaction rates. We show that they can be widely used to describe the relevant dynamics, leading to interesting insights on the multi-stability problem in networks of chemical reactions. Necessary conditions for multistability are thus identified. Our findings indicate that the dynamics produced by laws like the mass action law, can hardly produce multistable phenomena. In particular, we prove that they cannot do it in a wide range of chemical reactions.


  • This article has been cited by:

    1. Luca Mesin, Flavio Canavero, Lamberto Rondoni, Reduction of Protein Networks Models by Passivity Preserving Projection, 2013, 60, 0253-6102, 247, 10.1088/0253-6102/60/2/18
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3823) PDF downloads(80) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog