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Abstract. Boltzmann Maps are a class of discrete dynamical systems that
may be used in the study of complex chemical reaction processes. In this
paper they are generalized to open systems allowing the description of non-
stoichiometrically balanced reactions with unequal reaction rates. We show
that they can be widely used to describe the relevant dynamics, leading to
interesting insights on the multi-stability problem in networks of chemical re-
actions. Necessary conditions for multistability are thus identified. Our find-
ings indicate that the dynamics produced by laws like the mass action law,
can hardly produce multistable phenomena. In particular, we prove that they
cannot do it in a wide range of chemical reactions.

1. The biological problem. In recent years a new picture of the intracellular
mechanisms has been drawn. Cells can respond to a wide range of extracellular
stimula that induce different behaviors: apoptosis, proliferation, survival, motility
and so on. The effectors for signaling are proteins that play several roles: they can
be receptors, enzimes, vectors for signal propagation or catalizers. They interact
together drawing signaling pathway in which they are identified as nodes. A key
feature for these pathways is that they are not isolated: different paths, with com-
pletely different biological phenotypes as outputs, can share some nodes or even
some functional units. In other words a protein is not focused only on one job,
but it can perform different tasks. This important characteristic of the intracellular
signaling pathways increases the complexity of signaling description. It is a kind of
comunication code between extracellular environment and cell core.

Understanding this code is as interesting as complicated. One should know all
proteins involved in the signaling and should understand their roles. Intracellular lo-
calization is definitely important. Cells can be divided into different compartments:
membrane, cytoplasm, nucleus, cytoscheleton, mitocondria and so on. Proteins that
localize in different places cannot directly interact with each other, their interactions
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could be affected by diffusion, and spatial organization of proteins could switch on
signalling or could turn it off.

Common approaches to these problems concern topological proprieties of the
networks drawn by the interactions, and lead to the concept of robustness, via
graph theory. Cutting off one or more edges from a graph, a robust path should
still display the same behaviour and mediate the same information. That is quite
interesting from a biological point of view but may not be sufficient for a quantitative
study of the problem. [2, 8]

Boolean approaches are based on the weighting of edges of networks with
“boolean” rates: ±1 and 0. These approaches, get closer to quantitative analysis
[9, 10, 3]. Fully quantitative approaches are based on Lotka-Volterra predator-prey
models [11]. Pathways are interpreted as systems of reactions, and each reaction
is described by Ordinary Differential Equations (ODEs) for the protein concentra-
tions.

Complicated pathways result in large systems of ODEs characterized by many
parameters. Their behaviour depends on the reaction constants, that must be
determined experimentally. It is usually difficult and invasive to get a good estimate
of such constantss; moreover, their values vary from cell type to cell type.

In this work a different approach is developed, through a generalization of Boltz-
mann Maps meant to describe the behavior of the concentrations of proteins as
functions of the parameters. In this way, it is possible to understand the impor-
tance of the reaction constants for the different biological phenotipes. Various
models of chemical reactions appear chaotic, while other models appear non chaotic
[6, 12, 18, 4, 7, 21], but it is diffcult to understand the extent to which these be-
haviours pertain to the models, to their approximations, or to the real systems of
reactions.

The considerable amount of research performed so far has not clarified to a
satisfactory degree various questions, including that of the bistability [1, 5]. In fact,
doubts have been raised that the law of mass action is the appropriate starting
point to understand these problems of biological interest. In this paper we do one
step forward in this direction, indicating that the law of mass action by itself is
typically not adequate to produce complex behaviours.

Boltzmann Maps allow us to treat the model without any need for simplifications.
The price to pay is that, so far, Boltzmann maps do not describe all networks of
reactions that one would like to treat.

This paper is organized as follows. Section 2 describes Boltzmann maps, and
sumarizes the results obtained through them. Section 3 generalizes the results
to networks of reactions, while Section 4 focuses on a subset of reactions that are
called linearly independent. Section 5 illustrates physical aspects of this description.
Section 6 summarizes our conclusions.

2. Boltzmann maps. Boltzmann Maps are a class of discrete time stochastic
processes [19], that have been adapted to describe the time evolution of chemical
reactions [16, 14, 15, 13], by associating given probabilities to the concentrations
of the chemicals which take part in a given reaction. They owe their name to
the Boltzmann Stosszahlansatz, which implies that particles are independent before
they interact with each other.
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2.1. Balanced reactions and equal reaction constants. The first reactions
that have been studied in terms of Boltzmann maps have been called “stoichio-
metrically balanced” and have equal forward and backward reaction constants. We
recall their definition and properties, by means of a simple example first, and later
we illustrate the general framework.

Definition 2.1. A chemical reaction

r1A1 + ... + rnAn

kb

⇋
kf

s1B1 + ... + smBm

is called stoichiometrically balanced, if the sums of its stoichiometric coefficients
obey r1 + ... + rn = s1 + ... + sm. If some of the chemicals Ai and Bj coincide, the
reaction is called autocatalytic.

Consider the following reaction with equal reaction rates for both directions of
reaction:

2A
k
⇋
k

A + B. (1)

The law of mass action gives the evolution of the concentrations of the chemicals A
and B, respectively a and b, in terms of the following system of ODEs:

ȧ = −k(a2 − ab)

ḃ = +k(a2 − ab)
(2)

This system can be associated with an evolving probability measure P , whose com-
ponents are the normalized concentrations:

P = (PA, PB); PA + PB = 1; PA, PB ≥ 0

PA =
a

a + b
, PB =

b

a + b

and belongs to the simplex of probability measures Σ(Ω) on the sample space Ω =
{A, B}. Assume that the probability for a particle i to interact with a particle j is,
according to the Boltzmann’s Stosszahlansatz, pij = PiPj where i, j = A, B. Then,
one can form the four dimensional vector p = P ⊗ P = σ(P ) that describes the
two-chemicals probabilities:

p =
(

pAA, pAB, pBA, pBB

)

=
(

p2
A, pApB, pBpA, p2

B

)

,

with p ∈ Σ(Ω×Ω), the simplex of probability measures on the sample space Ω×Ω =
{AA, AB, BA, BB}.

After a time interval ∆t, during which reactions take place, the concentrations
of A and B, hence the probability p, may have changed. If µ is the probability that
two particles A react and produce a pair AB in that time interval, 1 − 2µ is the
probability that they do not react2. Then, the probability to find a couple AA, after
a time step, is (1−2µ) times the probability that two A’s are present, pAA, plus the
contribution of the reverse reaction, which uses one A and one B to produce two
A’s. Assume that the reverse reaction occurs with same probability, in the same

2The factor two in front of µ is due to the fact that A and A produce AB or BA with equal
probability.
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interval ∆t. Then, calling p∗ = (p∗AA, p∗AB, p∗BA, p∗BB) the resulting probability, one
can write:

p∗AA = (1 − 2µ)pAA + µpAB + µpBA = (1 − 2µ)p2
A + 2µpApB

p∗AB = µp2
A + (1 − µ)pApB

p∗BA = µp2
A + (1 − µ)pApB

p∗BB = p2
B

The last equation is due to the fact that two B’s interaction results always in
two B’s. Concisely, one may write p∗ =

(

p∗AA p∗AB p∗BA p∗BB

)

= Tp, where
T : Σ(Ω × Ω) → Σ(Ω × Ω), is defined by

T =









1 − 2µ µ µ 0

µ 1−µ
2

1−µ
2 0

µ 1−µ
2

1−µ
2 0

0 0 0 1









and is doubly stochastic if µ ∈ [0, 1
2 ]. The probabilities of the single chemicals

after the time ∆t is the conditional expectation onto the first factor of p∗, P ∗ =
(P ∗

A P ∗
B) = Mp∗, where M : Σ(Ω × Ω) → Σ(Ω) is defined by

Mq = M(qAA, qAB, qBA, qBB) = ((Mq)A, (Mq)B) = (qAA + qAB, qBA + qBB) .

Therefore, one obtains

P ∗
A = PA − µ(P 2

A − PAPB)

P ∗
B = PB + µ(P 2

A − PAPB)

which is the Euler scheme for the numerical solution of Eqs.(2), with µ = k(a+b)∆t.

Definition 2.2. Given a sample space Ω, and a doubly stochastic matrix on Σ(Ω×
Ω), the map τ : Σ(Ω) → Σ(Ω), that transforms P into P ∗, performing the steps σ,
T and M :

P
σ
7→ p = P ⊗ P

T
7→ p∗

M
7→ P ∗ = τ(P ) (3)

is called Boltzmann Map.

This definition trivially generalizes to the case in which T acts on Σ(Ω ×n
i=1 Ω),

for any finite n [16]
This construction suggests some considerations. From the second principle of

thermodynamics, the physical entropy of an isolated system, such as the one here
described, increases from the initial state to the equilibrium state. Often the ther-
modynamic entropy is identified with the information theoretic Shannon entropy,
defined by

S = −PA log PA − PB log PB = S(PA) + S(PB) ,

although this identification is not always justified. Nevertheless, if S qualitatively
behaves like the physical entropy, one may use it to characterize the evolution of
the system. In particular maximizing the Shannon entropy as a function of the
probability measure p, one could identify the steady states.

The Shannon entropy would then be a Liapunov functional for the system of
ODEs associated with Reaction (1), as indeed verified in [16].
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This approach readily extends to systems of m reactions involving n chemicals
[16]

α j
i Cj

k
+

i

⇋
k
−

i

α̂ j
i Cj ; i = 1, . . . , m ; j = 1, . . . , n (4)

if stoichiometric balance holds, i.e.
∑n

j=1 α j
i =

∑n
j=1 α̂ j

i , and if k+
i = k−

i .3 Let us

introduce the m×n matrices α = (α j
i ) and α̂ = (α̂ j

i ) containing the stoichiometric
coefficients of chemicals that appear respectively on the left and on the right hand
side of Eq.(4). The rows of α and α̂ correspond to reactions while the columns
refer to the different chemicals; these form the sample space, Ω = {C1, ..., Cn}. If

chemical Cj does not appear on the left of the i-th reaction, α j
i = 0 and, similarly,

α̂ j
i = 0 if it does not appear on the right side. A Boltzmann map can be defined

for such systems of reactions, through the convex combination τ of the maps of the
single reactions, τ (i), i.e.

τ =
n
∑

i=1

λiτ
(i), λi ≥ 0,

m
∑

i=1

λi = 1,

where, letting P ∈ Σ(Ω) be a probability on Ω, each τ (i) acts as the identity on
the components of P concerning the chemicals not affected by the i-th reaction.
The map σ of the previous example, is replaced, in each single reaction, by a map
σi, which forms the product ⊗νi

j=1Pj , i.e. the product probability in the νi-particles

space Σ(×νi

i=1Ω), if νi =
∑n

j=1 α j
i =

∑n
j=1 α̂ j

i . Similarly T is replaced by the single

interaction matrices T (i), constructed with the probabilities that νi particles react.
Finally, M is replaced by the conditional expectations Mi, which sum over νi − 1
components of the joint probabilities on the νi-particle space.

Thanks to the properties of doubly stochastic matrices and to the convexity of
the entropy, existence, uniqueness, global stability and convergence to the fixed
points (or stationary states) have been proven for all systems of stoichiometrically
balanced reactions, with k+

i = k−
i for all reactions [16]. These results exclude the

possibility that such systems of reactions, as large and complex as one wishes, may
enjoy any form of bistability.4 It is interesting to note that this is a consequence of
the following facts:

• the dynamics τ takes palce in a compact and convex state space;
• the Shannon entropy is bounded, strictly convex and a strict Liapunov func-

tion for each single raction τ (i);
• the dynamics due to a single τ (i) moves the concentrations along a given

straight line whose orientation is determined by the stoichiometric coefficients,
and which is selected by the initial conditions.

It follows that the convex combination of the single maps has the Shannon entropy
as a strict Liapunov function, that the maximum of this function is an equilibrium
state, and that this equilibrium is unique and globally attracting. This is in accord
with the physics of well stirred (spacially homogenous) and isolated (neither matter
nor energy are exchanged with the environment) reactions. Furthermore, because
each single reaction makes the Shannon entropy increase, except at the equilibrium

3In Eq.(4), Einstein’s summation convention is used.
4Various equilibria may coexist, but except for the one that maximizes the Shannon entropy,

subject to the constraints of the conserved quantities, they are all trivial, in the sense that they
correspond to the absence of chemicals needed for the reaction to proceed.
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state, it results that the unique fixed point is the only point which is fixed for each
reaction, separately. This makes quite easy its identification. Furthermore, the fact
that each single τ (i) reaction moves the probabilities along a line of given orientation
and that τ is a convex combination of the τ (i)’s, implies that the full dynamics is
confined within a set of dimensionality equal to the number of independent orien-
tations. Therefore lack of stoichiometric balance, or unequal reaction constants are
necessary conditions for multistable phenomena.

The generalization of the above results to systems of reactions which are not
stoichiometrically balanced, or which have unequal forward and backward reaction
constants, is not obvious. Indeed, simple counterexamples show that some fun-
damental features of the theory outlined above fail to be realized in more general
settings. This problem is considered in the next section.

2.2. Activity-led and X-led general single reactions. Boltzmann Maps have
been devised for single reactions which are not stoichiometrically balanced and
which have unequal reaction rates [13]. The construction given so far, however, holds
for single reactions only and rests on virtual particles, which restore the stoichimetric
balance and equalize the possibly different forward and backward reaction rates. We
illustrate these ideas on a simple example:

A + A
k+

⇋
k−

B, with k+ 6= k− . (5)

To be treated, this reaction is first transformed into

A + A
k
⇋
k

B + γ−, (6)

where the value of k is proportional to k+ while the concentration of γ− is fixed so
that the product kγ− be equally proportional to k−. Thus the modified reaction be-
haves like the original one, with different forward and backward reaction constants.
If γ− is seen as a real chemical, the fact that its concentration is fixed implies a flow
of γ− particles in and out of the reactor. Therefore, Reaction (5) represents an open
system and its entropy does not necessarily grow, differently from the previously
discussed cases.5 In this case, even if the Shannon entropy continues to qualitatively
behave as the physical entropy, it does not necessarily play the role of a Liapunov
functional for the evolution, and shoud be replaced by other quantities [13, 14, 17].

Indeed, in [13, 17, 14], the theory was modified as follows. First, the sample space
is taken to be Ω = ΩA×ΩB ×Ωγ− , where Ωd = {0, 1, 2, 3, . . .} is the infinite sample
space of numbers of molecules of chemical d. Let p be a probability measure on
the simplex Σ(Ω). Its time evolution is given through a doubly stochastic operator,
as in the previous theory, but the vectors of probabilities p = {pijk}∞i,j,k=0 are not
identified with the concentrations of the chemicals: their generic component, pijk

say, represents the probability to find i particles of chemical A, j particles of B
and k particles of γ− in a given volume ∆V , which is not specified. The chemical
concentrations are obtained as the expected numbers of chemicals, NA,NB and Nγ− ,

5In some papers the virtual particles have been interpreted as the heat exchanged by the
reaction with a heat reservoir [17]. Even in this case, the system is formally not isolated and the
entropy is not a Liapunov function.
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in ∆V , and are given by

ρA =
NA

∆V
=

1

∆V

∞
∑

i=0

i pA(i) ; ρB =
NB

∆V
=

1

∆V

∞
∑

i=0

i pB(i) (7)

ργ− =
Nγ−

∆V
=

1

∆V

∞
∑

i=0

i pγ−(i) (8)

where

pA(i) =

∞
∑

j,k=0

pijk , pB(j) =

∞
∑

i,k=0

pijk , pγ−(k) =

∞
∑

i,j=0

pijk

are the marginal probabilities concerning the single chemicals. For a general single
reaction of the form:

α jCj

k−

⇋
k+

α̂ jCj , j = 1, . . . , n (9)

one needs two virtual chemicals at most, γ− and γ+. One virtual chemical suffices if
the reaction is not stoichiometrically balanced, since one may add a stoichiometric
coefficient for γ− to balance the stoichiometry. Then taking the γ− concentration
one obtains the desired k+ to k− ratio. If, on the other hand, the reaction is stoi-
chiometrically balanced, two virtual chemicals are needed to preserve this balance,
and there is one further degree of freedom to obtain the desired value of k+/k−.
In the following, for sake of generality, we assume that two virtual chemicals have
been added to the original reaction:

ηγ+ + α jCj

k̃
⇋
k̃

α̂ jCj + η̂γ−,

α jδj + ηδ̂+ = α̂ jδj + η̂δ̂− .

(10)

Denote by ΩC =
∏n

j=1 ΩCj
the sample space of the real chemicals, with ΩCj

=

{0, 1, 2, 3, . . .} for each chemical Cj , and by (l1, l2, · · · , ln) the configuration of the
system with l1 molecules of chemical C1, l2 of chemical C2 and so on. The full
sample space of the balanced reaction is then

Ω ≡ ΩC × Ωγ ≡
n
∏

d=1

Ωd × Ωγ+ × Ωγ−

where Ωγ = Ωγ+×Ωγ− is the sample space of the virtual chemicals. Let Σ(Ω) denote
the simplex of probability measures on Ω, and consider only product measures in
it:

p = ⊗n
d=1 pd ⊗ pγ+ ⊗ pγ−

where pd = (pd(0), pd(1), pd(2), . . . ) is the collection of probabilities pd(i) to find i
particles of species d in volume ∆V . So the probability to find that the state is

(l1, . . . , ln, q+, q−) , (11)

is defined by the product:

pl1···lnq+q
−

= p1(l1) · · · pn(ln) pγ+(q+) pγ−(q−). (12)

In order to obtain the kinetic equations for the reaction, [13] assumes that initially
pd obeys pd(i) = ai

d(1− ad), with ad ∈ [0, 1), which is called activity, and is related
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to the average (or expected) number of chemicals Nd in ∆V by

Nd =
ad

1 − ad

, ad =
Nd

1 + Nd

.

To describe the evolution of the probability measure p, caused by the chemical
reaction, [13] introduces a doubly stochastic operator T : Σ(Ω) → Σ(Ω), defined by

p∗l1···lnq+q
−

= T
a1···anb+b

−

l1···lnq+q
−

pa1···anb+b
−

,

with the condition that a state like (11) may only evolve in

(l1 − m1, · · · , ln − mn, q+ − η, q− + η̂)

or in

(l1 + m1, · · · , ln + mn, q+ + η, q− − η̂) .

Let µ be the probability of such transitions in the unit time. Here, md ≡ αd − α̂d

represents the variation of the number of chemicals in one reaction event. Clearly,
the reaction events may take place only if the number of reactants is sufficient, i.e.
if

ld − md ≥ 0, q+ − η ≥ 0, q− − η̂ ≥ 0 .

In this case, there is a probabilty 1 − 2µ that the reaction event does not occour.
Otherwise the no-reaction probability is 1.

Remark 1. At this stage, the concentrations of virtual chemicals may still vary.
The way in which they are fixed is explained later.

The probability of the state Eq.(11), after one time step, is then obtained from
the probability that the reaction does not take place, times the initial probability,
and from the probability that the reaction does take place, times the probability
associated with the reaction products. The resulting operator T may be represented
by the matrix elements

T
a1···anb+b

−

l1···lnq+q
−

=(1 − µζ+ − µζ−) δ
a1···anb+b

−

l1···lnq+q
−

+

− µζ+δ
a1···anb+b

−

l1−mi1,··· ,ln−min,q+−η,q
−

+η̂ +

− µζ−δ
a1···anb+b

−

l1+mi1,··· ,ln+min,q++η,q
−
−η̂ .

(13)

where δ
a1···anb+b

−

l1···lnq+q
−

are Kroneker symbols, whose elements equal one when

the values of the upper labels equal those of the lower ones, and are zero otherwise,
while the terms ζ± let the reaction proceed only when the amounts of chemicals are
sufficient for that; they are defined as products of Heaviside step funcions:

ζ+ =

n
∏

d=1

θ(ld − αd)θ(q+ − η)

ζ− =

n
∏

d=1

θ(ld − α̂d)θ(q− − η̂) .

In the case of Reaction (6), T has a set of invariant subspaces, in the simplex Σ(Ω),
that are spanned by the probabilities of the following sets of states in Ω:

{(

n, j, z
)

,
(

n − 2, j + 1, z + 1
)

, . . . ,
(

1, j + n−1
2

, z + n−1
2

)}

, if n is odd,
{(

n, j, z
)

,
(

n − 2, j + 1, z + 1
)

, . . . ,
(

0, j + n

2
, z + n

2

)}

, if n is even,
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where j, z ≥ 0, jz = 0, and none of the entries in the brackets can be negative. For
example, let the initial state be (4, 2, 1). Then the corresponding invariant subspace
concerns the states

{

(6, 1, 0) , (4, 2, 1) , (2, 3, 2) , (0, 4, 2)
}

.

The smallest subspaces are related to
{(

0, j, z
)}

and
{(

1, j, z
)}

and are
one-dimensional. The action of T is the identity on the 1-dimensional invariant
subspaces; it is represented by

(

1 − µ µ
µ 1 − µ

)

,

on the 2-dimensional subspaces, and by




1 − µ µ 0
µ 1 − 2µ µ
0 µ 1 − µ





on the three dimensional subspaces. Higher dimensional subspaces are acted on by
block matrices whose first and last rows are (1 − µ, µ, 0, . . . , 0) and (0, . . . , 0, µ, 1−µ)
respectively, while the other rows have the form (0, . . . , 0, µ, 1 − 2µ, µ, 0, . . . , 0).

The probability p∗d to find particles of the species d, after the action of T , which
transforms p into p∗, is obtained as the conditional expectation onto the d-th factor
p∗d = Mdp

∗, defined by

p∗d(ld) =
∑

l1,...,ld−1,ld+1,...,q+,q
−

p∗l1,...,ld,...,ln,q+,q
−

, ld = 0, 1, 2, . . . (14)

In the case of Reaction (6), this results in the probabilities

p∗A(0) = (1 − µ)pA(0) + µ
[

pA(2) + pA(0)pB(0) + pA(0)pγ−(0)+

−pA(0)pB(0)pγ−(0)
]

p∗A(1) = (1 − µ)pA(1) + µ
[

pA(3) + pA(1)pB(0) + pA(1)pγ−(0)+

−pA(1)pB(0)pγ−(0)
]

p∗A(i) = (1 − 2µ)pA(i) + µpA(i)
[

pB(0) + pγ−(0) − pB(0)pγ−(0)
]

+

+ µpA(i − 2)
[

1 − pB(0) − pγ−(0) + pB(0)pγ−(0)
]

+

+ µpA(i + 2), i ≥ 2,

(15)

for the chemical A, and in the probabilities:

p∗B(0) = RB(0); p∗B(j) = RB(j), j ≥ 1

p∗γ−
(0) = Rγ−(0); p∗γ−

(z) = Rγ−(z), z ≥ 1

for the chemicals B and γ, where

Rd(0) = (1 − µ)pC(0) + µ[pA(0)pC(0) + pA(1)pC(0) + pC(0)], for d = {B, γ}

RB(j) = (1 − 2µ)pB(j) + µ[pA(0) + pA(1) + pγ−(0)] + µpB(j + 1)[1 − pγ−(0)]+

+ µpB(j − 1)[1 − pA(1) − pA(0)] , for j ≥ 1

Rγ−(j) = (1 − 2µ)pγ−(j) + µ[pA(0) + pA(1) + pB(0)] + µpγ−(j + 1)[1 − pB(0)]+

+ µpγ−(j − 1)[1 − pA(1) − pA(0)] for j ≥ 1
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After a time step, ∆t, the average expected number of chemicals of specie d becomes
N∗

d =
∑∞

i=1 ip∗d(i). In particular, Reaction (6) yields

N∗
A = NA − µ

{

2[1 − pA(1) − pA(0) − 2[1 − pB(0) − pγ−(0) + pB(0)pγ−(0)]
}

where Eq.(15) was used. Recalling that the initial probability has the form pd(i) =
ai

d(1 − ad), one obtains

N∗
A = NA − 2µ(a2

A − aBaγ−) . (16)

In the limit that Nd ≪ 1, one has ad ≈ Nd, hence Eq.(16) becomes the Euler scheme
for the numerical solution of the differential equation implied by the law of mass
action, expressed in terms of the average number of chemicals:

N∗
A = NA − 2µ(N2

A − NBNγ−) ,

where µ = k̃∆t and k̃ is the reaction constant of (10). Similarly, for the other
chemicals, the action of T produces:

N∗
B = NB + µ(N2

A − NBNγ−) , N∗
γ−

= Nγ− + µ(N2
A − NBNγ−) .

In the time ∆t, p most likely loses its original form of product probability, even
if it starts as such. Therefore, to continue to express the evolution in terms of
activities, [13] first introduced the map M that takes p∗ into the product of its
marginals, p∗1 ⊗ p∗2 ⊗ · · · ⊗ p∗

γ+ , and then defined the map Qd : Σ(Ωd) → Σ(Ωd) as:

[Qdpd](i) = ai
d(1 − ad), 0 ≤ ad < 1, i ≥ 0

with the requirement that Nd be preserved by Qd, i.e.

∞
∑

i=0

i[Qdpd](i) =

∞
∑

i=0

ipd(i) = Nd

The action of the map obtained concatenating T , M and the Qd’s (collectively
denoted by Q) modifies the concentrations of the virtual chemicals, therefore, [13]
finally introduces the map ξ : Σ(Ω) → Σ(Ω), which acts only on the probabilities of
the virtual chemiclas, restoring them to their initial values. The Boltzmann Map
for the given single reaction, is then defined as the map acting on product states,
which is obtained from the composition of the maps described above; it can be
concisely expressed by τ = ξ ◦ Q ◦ M ◦ T .

Definition 2.3. The single reaction map defined by

p = ⊗n
d=1pd ⊗ pγ+ ⊗ pγ−

T
7→ p∗

M
7→ ⊗n

d=1p
∗
d ⊗ p∗γ+ ⊗ p∗γ−

Q
7→ ⊗n

d=1p
′
d ⊗ p′γ+ ⊗ p′γ−

ξ
7→ ⊗n

d=1p
′
d ⊗ pγ+ ⊗ pγ− = p′ = τp .

(17)

is called generalized Boltzmann Map.



REACTIONS MULTI-STABILITY PROBLEM 511

The Shannon entropy associated to the system described by Reactions (10) is
defined by

S (p) = −
∞
∑

l1...q
−

pl1...p
γ−

log pl1...p
γ−

=

= −
n
∑

d=1

∞
∑

i=0

pd(i) log pd(i) −
∞
∑

i=0

pγ+(i) log pγ+(i) −
∞
∑

i=0

pγ−(i) log pγ−(i) =

=

n
∑

d=1

[(1 + Nd) log(1 + Nd) − Nd log Nd] + (1 + Nγ+) log(1 + Nγ+)+

− Nγ+ log Nγ+ + (1 + Nγ−) log(1 + Nγ−) − Nγ− log Nγ− =

=

n
∑

d=1

S(pd) + S(pγ+) + S(pγ−)

where the single chemical entropies S have been introduced. The actions of T ,
M and Q do not decrease S , if ∆t is sufficiently small and positive; indeed, they
increase S except at their unique common fixed point. But the action of the map ξ,
taking back to their previous values the probabilities of the virtual chemicals, could
decrease S , consistently with the picture of an open system. Is there a different
Liapunov functional that may characterize the dynamics of τ defined by Eq.(17)?
References [13, 17, 19] answer affirmatively this question, observing that

S(N ′
γ) = (1 + N ′

γ) log(1 + N ′
γ) − N ′

γ log N ′
γ + (1 + N ′

γ) log(1 + Nγ)

− N ′
γ log Nγ − (1 + N ′

γ) log(1 + Nγ) + N ′
γ log Nγ =

= fNγ
(N ′

γ) + (1 + N ′
γ) log(1 + Nγ) − N ′

γ log Nγ

where γ = γ+ or γ−, and fNγ
(x) = (1 + x) log (1+x)

(1+Nγ) − x log x
Nγ

. The function fNγ

has an absolute minimum in x = Nγ and obeys fNγ
(x) ≥ 0, for every x ∈ R

+ ∪{0}.
It follows that the Shannon entropy for real chemicals obeys the following:

n
∑

d=1

S(N ′
d) = S (p′) − S(N ′

γ+) − S(N ′
γ−

)

≥ S (p) −
∑

q={γ+,γ−}

[

(1 + N ′
q) log(1 + Nq) − N ′

q log Nq

]

=

n
∑

d=1

S(Nd) + (N ′
γ+ − Nγ+) log

Nγ+

(1 + Nγ+)
+ (N ′

γ−
− Nγ−) log

Nγ−

(1 + Nγ−)

(18)

where N ′
d is the population of the real chemical Cd after a time step, while N ′

γ+

and N ′
γ−

are the populations that the virtual chemicals would reach if they were

not fixed by the map ξ. The inequality holds because the Shannon entropy is
defined over the complete system of real and virtual chemicals, and the virtual ones
change like any other chemical under the actions of T , M and Q. Thus S (p′) =
∑n

d=1 S(N ′
d) + S(N ′

γ+) + S(N ′
γ−

) ≥
∑n

d=1 S(Nd) + S(Nγ+) + S(Nγ−) = S (p), and

the only step that may decrease S is the application of ξ. Exploiting the existence
of conserved quantities, such as

ηNγ+ + (α̂d − αd)Nd = const. , and η̂Nγ− + (αd − α̂d)Nd = const. , (19)
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one realizes that the following function Ψ is a strict, strictly convex Liapunov func-
tional for the reaction:

Ψ(N1, . . . , Nn) =
n
∑

d=1

S(Nd) + bℓ
γ+Nℓ log

Nγ+

(1 + Nγ+)
+ bk

γ−
Nk log

Nγ−

(1 + Nγ−)
, (20)

where bℓ
γ+ = α̂l−αl

η
and bk

γ−
= αk−α̂k

η̂
are constants determined by the stoichiometric

coefficients and Nℓ and Nk are eiher the populations of any two real chemicals, or
of any single one. Using these facts, the same argument of Section 2.1 proves
the following, which applies even to non-stoichiometrically balanced reactions with
unequal forward and backward reaction rates:

Proposition 1. Consider a single activity-led reaction, with positive initial con-
centrations. Its state is asymptotically attracted towards a fixed point.

The interest of the activity-led reactions lies in the fact that the law of mass
action is bound to fail at very high concentrations, where the reaction rates tend
to saturate, rather than growing as powers of the concentrations. From this point
of view, activity-led reactions provide one saturation mechanism. However, in [13],
it was proven that existence of a strict Liapunov function, and global convergence
to a unique fixed point, is afforded by a much more general class of reactions, there
called X-led. The X-led evolution of a generic reaction like (9) is governed by the
map

N ′
d = Nd − sign

(

αd − α̂d
)

χd D (N1, . . . , Nn) , d = 1, . . . , n

where χd is a constant that depends on ∆t and on the stoichiometric coefficients,
the disequilibrium parameter is given by

D (N1, . . . , Nn) = k+X1(N1)
α1

· · ·Xn(Nn)αn

− k−X1(N1)
α̂1

· · ·Xn(Nn)α̂n

(21)

and the functions Xi : [0,∞) → R can be the concentration, the activity or any
other function of the concentration of Ci, which obeys the following conditions:

• Xi is continuously differentiable in (0,∞);
• Xi(0) = 0 ;
• dXi

dNi
> 0 , for Ni > 0 ;

• given an interval [0, η) and one natural number m, there is a real number
ω(m, η) > 0 such that Ni/Xi(Ni)

m ≥ ω(m, η) for all Ni ∈ (0, η).

In the next section, the theory illustrated in this subsection is generalized to net-
works of reactions, similarly to what was done for the theory concerning stoichio-
metrically balanced reactions with equal forward and backward reaction constants.
However, it turns out that a straight generalization of the results on existence and
uniqueness of the fixed points, and on the global convergence to such fixed points,
is not possible in this case.

3. Networks of reactions. Consider a system of m reactions in the general form:

α j
i Cj

k+

i

⇋
k
−

i

α̂ j
i Cj , i = 1, . . . , m j = 1, . . . , n (22)

where stoichiometric balance and equal forward and backward reaction constants
are not required. To balance stoichiometrically all the reactions, and to have equal
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forward and backward reaction constants in each of them, introduce 2m virtual
chemicals

(

γ−
1 , γ+

1 , · · · , γ−
m, γ+

m

)

, so that the reaction becomes:

ηiγ
+
i + α j

i Cj

ki

⇋
ki

α̂ j
i Cj + η̂iγ

−
i ; i = 1, . . . , m ; j = 1, . . . , n (23)

and the balance conditions
∑

j α j
i + ηi =

∑

j α̂ j
i + η̂i hold for every i. Here {α j

i }

and {α̂ j
i } are the matrices of the stoichiometric coefficients of the Reactions (22),

while {ηi} and {η̃i} are the corresponding vectors for the virtual substances; these
arrays have vanishing entries for the chemicals that do not appear in some of the
reactions. The sample space, as above, is denoted by

Ω ≡ ΩC × Ωγ ≡
n+2m
∏

d=1

Ωd,

and Σ(Ω) represents the corresponding simplex of probability measures. Again,
we only consider product probability measures p = ⊗n+2m

d=1 pd, where the virtual
chemicals probabilities are labelled by d = n + 1, . . . , n + 2m. This does not suffice
for a direct generalization of the theory of Subsection 2.1 to all network of reactions.

3.1. Compactness of the phase space. Fundamental ingredients of the proofs
that led to the results of Subsection 2.1 are the convexity and compactness of
the phase space, which coincided with the closed, bounded and finite dimensional
Σ(Ω), and with the strict convexity and boundedness of the Shannon entropy S .
In the case of systems of reactions which are not balanced, this boundedness of the
Shannon entropy is not guaranteed anymore. For instance, the reactions

x1

k
+

1

⇋
k
−

1

x2 ; x2

k
+

2

⇋
k
−

2

2x1 (24)

can be separately considered as single reactions, in the theory so far developed,
but if they constitute a network of two reactions, they lead to an evolution during
which S may grow without bounds. Indeed, if the two reactions are taken with
same weight, the X-led evolution equations take the form

Ṅ1 = −k+
1 X1 + k−

1 X2 + 2k+
2 X2 − 2k−

2 X2
1

Ṅ2 = k+
1 X1 − k−

1 X2 − k+
2 X2 + k−

2 X2
1

which have a unique fixed point (X̂1 = k+
1 k+

2 /k−
1 k−

2 , X̂2 = (k+
1 )2k+

2 /(k−
1 )2k−

2 ) apart
from the trivial one (0, 0). In the case that Xi = Ni, this non-trivial fixed point
attracts the evolution, and results in unbounded growths if either k−

1 or k−
2 vanish,

but unbounded growths of the concentrations are obtained even with finite reaction
constants. For instance, if the evolution is activity led, Xi = ai, it suffices that
either X̂1 or X̂2 be greater than one. However, Reaction (24) is not physically
relevant, since it violates the condition of conservation of mass; the concentrations
may grow without bounds, making the Shannon entropy, as well as other similar
functionals, increase without bounds. This is not the case of stoichiometrically
balanced reactions, because they even preserve the total number of particles in the
system. One realizes that Reaction (24) has no linear conserved quantities whose
coefficients are all positive. Therefore, in the following, we restrict our attention to
systems which verify the following:
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Condition 1. When the reactor is closed, the network of reactions preserves one
linear combination of all the “concentrations”

ς jNj = M (25)

whose coefficients ς j are all positive.
This condition is independent of the equality, or otherwise, of the forward and

backward reaction constants.
Conservation of mass always leads to a conserved quantity of the form of Eq.(25)

but this condition is more general: Eq.(25) is a necessary condition for compactness
of the phase space, whatever the meaning of this conserved quantity is.

Nj(t) ≥ 0, j = 1, . . . , n + η

for all times t, which, because of the validity of Eq.(25), implies also the bounds

Nj(t) ≤ N̄j =
M

ς j

The presence of further linear conserved quantities, of the form

ς j
j Nj = cj , j = 1, ..., m̃ (26)

where the coefficients ς j
j are not necessarily positive anymore, simply reduces fur-

ther the size of the phase space for the evolution of the concentrations, which we
call Λ. This proves the following:

Proposition 2. Any strictly convex function (e.g. the Shannon entropy) has a
unique maximum in Λ, if condition in Eq.(25) is satisifed.

3.2. Fixed points and reactions dependence. In the case of Section 2.1, Eq.(25)
is always satisified, hence there is a unique maximum for the Shannon entropy in Λ,

Ŝ = S (p̂), which corresponds to the unique fixed point of the map τ =
∑m

i=1 λiτ
(i).

This point is fixed for each single reaction, separately, i.e. it satisifes p̂ = τ (i)p̂ for
i = 1, . . . , m. This makes rather easy its identification, however large the number
of chemicals n or the number of reactions m might be. The search for the fixed
points is further simplified by the observation that each single reaction identifies
a direction in the phase space of the concentrations, which is given by the inter-
section of n− 1 hyperplanes representing n− 1 conserved quantities, like Eqs.(26).
Therefore, the single reaction lives in the line identified by this direction and by
the initial condition, indpendently of whether the reaction is density-led or more
generally X-led. This implies that the network of reactions lives in a set which is
m-dimensional, if all reaction lines are linearly independent, otherwise it lives in a
lower dimensional set. Clearly, this dimensionality never exceeds n−1, in the physi-
cally relevant cases without in- and out-fluxes of matter, because the concentrations
are assumed to obey Eq.(25).

Definition 3.1. We call dependent or, respectively, independent the networks of
reactions whose reaction lines are or, respectively, are not linearly dependent.

In the cases of Section 2.1, with (n − 1)-dimensional set Λ, the fixed point is
immediately found to be the uniform distribution pu = (1/n, . . . , 1/n), which is the
global maximum of S . This is the case whether m = n − 1 or m ≥ n − 1, as
illustrated, for example, in Fig. 1 for the two networks

A + B
k1

⇋
k1

2C ; 2A
k2

⇋
k2

B + C (27)
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Figure 1. The phase space of networks (27) and (28) is the lower-
right triangle of the square [0, 1]× [0, 1]. The single reaction direc-
tions are identified by the labels R1, R2 and R3, according to the
order of (28). The manifolds of fixed points of the single reactions
are correspondingly labelled by FP1, FP2 and FP3. The left panel
refers to network (27), the right panel to network (28). In both
cases, there is a unique fixed point for the overall dynamics, iden-
tified by the intersections of the single reaction manifolds of fixed
points. At that point, S is maximum. In the case of (27), the re-
action directions are linealry independent; while they are linearly
dependent in the case of (28).

and

A + B
k1

⇋
k1

2C ; 2A
k2

⇋
k2

B + C ; A + C
k3

⇋
k3

2B (28)

whose only conserved quantitiy is the total mass, pA + pB + pC = 1. The fixed
point of both networks is easily found to be (1/3, 1/3, 1/3) by solving respectively
the two systems

{

pApB = p2
C

p2
A = pBpC

and







pApB = p2
C

p2
A = pBpC

pApC = p2
B

with pC = 1 − pA − pB (29)

and considering that the maximum of S can only be obtained at a fixed point
(because S is a strict Liapunov functional), and that the maximum of S is the
uniform distribution, if there are no constraints to satisfy.

In the case of linearly dependent networks, this reasoning fails if one of the reac-
tions has unequal forward and backward reaction constants. Consider, for instance,

A + B
k
+

1

⇋
k
−

1

2C ; 2A
k2

⇋
k2

B + C ; A + C
k3

⇋
k3

2B . (30)

Fig. 2 shows that the manifolds of the single reaction fixed points do not have a
common intersection.

Another difficulty in the study of networks, with non-balanced reactions, is evi-
denced by the physical condition of the conservation of mass. Consider, for instance,
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Figure 2. The phase space of network (30). Because k+
1 6= k−

1

there is no fixed point common to the three reactions separtely.
The two continuos curved lines correspond to k+

1 = 0.7 (upper
line), and to k+

1 = 0.2 (lower line), while k−
1 = 1.

the following network:

A + B
k
+

1

⇋
k
−

1

C ; 2A
k2

⇋
k2

B + C ; A + C
k3

⇋
k3

2B (31)

which is like the previous example, except for the presence of C in place of 2C,
in the right hand side of the first reaction. The difficulty is that each reaction
implies one condition on the masses mA, mB and mC of the different chemicals:
the first reaction implies mA +mB = mC , the second implies 2mA = mB +mC and
the third implies mA + mC = 2mB. These conditions amount to an homogeneous
linear system of equations, which has positive solutions only if the determinant of
the matrix of coefficients vanishes. In our case, this does not happen: the three
equations have only the trivial solution.

In general, networks of balanced reactions are bound to give rise to dependent
linear equations for the masses, whether the networks are dependent or not, because
the sum of the columns of the relevant coefficient matrix is the vanishing column.
If, on the other hand, one reaction is not balanced, the sum of the columns of the
coefficient matrix has one non-vanishing entry, and this may result in an indepen-
dent set of equations, which admit only the trivial solution. This means that the
given network, although mathematically viable, is physically impossible. Clearly,
for a fixed number of substances, the larger the number of reactions, the more likely
it is for a generic network to be dependent and for the equations for the masses to
be independent, if stoichiometric balance is not satisfied. Then the network is not
physically consistent, and is not of interest in our investigation on chemical kinetics.

The above shows that a generalization to networks of reactions with unequal
forward and backward reaction constants, or with non-balanced reactions, of the
results for the existence and uniqueness of the fixed points, requires some care, when
the reaction lines are dependent. Therefore, we first investigate the restricted case
of independent networks.
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4. Independent networks of activity-led reactions. Consider a network of m
reactions, like (23), whose evolution is activity-led. If this network is independent,
the real chemicals must be a number n ≥ m + 1, because the conservation of
mass always provides one linear relation among the real chemicals concentrations.
Therefore, for each different virtual chemical, there is a different linear quantity,
which may be added to the Shannon entropy, in order to define a strict Liapunov
function for the overall dynamics. This can be understood generalizing the argument
for single reactions given in Section 2.2. Take the doubly stochastic operator

T =

m
∑

i=1

λiT
(i), (32)

convex combination of the single reaction operator T (i), with coefficients λi, where
each T (i) is the doubly stochastic operator describing the reaction probabilities for
the i-th reaction, extended as the identity on the extra dimensions of the probability
space.

Using the operator T in the definition (17) of the Boltzmann map τ , one finds
that the corresponding map Υ for the evolution of the particle numbers N

N = (N1, N2, ..., Nn, Nγ
−

1

, ..., Nγ
+
m

)
Υ
7→ N ′ = (N ′

1, N
′
2, ..., N

′
n, Nγ

−

1

, ..., Nγ
+
m

).

is the convex combination of the single reaction maps Υ(i), Υ =
∑m

i=1 λiΥ
(i), and

is expressed by

N ′
j = Nj −

m
∑

i=1

µi

(

αj
i − α̂j

i

)

Di i = 1, . . . , m , j = 1, . . . , n

Here, the virtual chemicals concentrations do not vary in time. Denote by Υ̃ the
map corresponding to the same operator T , but without the application of ξ, i.e.
corresponding to τ̃ = Q ◦ M ◦ T . The action of Υ̃ is also a convex combination of
single reaction maps, Υ̃ =

∑m
i=1 λiΥ̃

(i), and is defined by

N ′
j = Nj −

m
∑

i=1

µi

(

αj
i − α̂j

i

)

Di

N ′
γ
+

i

= Nγ
+

i
− µiηiDi , i = 1, . . . , m , j = 1, . . . , n

N ′
γ
−

i

= Nγ
−

i
+ µiη̂iDi

(33)

where Di is the disequilibrium parameter of the i-th reaction, and some of the
stoichiomentric coefficients may vanish. In particular, αj

i vanishes if Cj does not

appear in the left hand side of the i-th reaction, α̂j
i vanishes if Cj does not appear

in its right hand side. The i-th reaction is called autocatalytic if both αj
i and α̂j

i are

positive. If αj
i = α̂j

i , Cj is a catalyst which is neither produced nor depleted by the
i-th reaction, hence the i-th reaction gives no contribution to the variation of the
concentration of Cj . If the i-th reaction in the network is balanced and has equal
forward and backward reaction constants, it is not necessary to introduce virtual
chemicals in it, therefore, in general, a network of m reactions has η virtual chemi-
cals, with 0 ≤ η ≤ 2m. However, for a sufficiently general formalism, it is convenient
to attribute two different virtual chemicals to each reaction in the network and, in
case they are not needed because the i-th reaction is stoichiometrically balanced
and has equal reaction constants, we will take ηi = η̂i = 1 and Nγ

−

i
= Nγ

+

i
= 1.
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Similarly to Section 2.2, we replace the concentration of each virtual
chemical with the concentrations of real chemicals, in the Shannon entropy, ob-
serving that

Nj +

m
∑

i=1

αj
i − α̂j

i

η̂i

Nγ
−

i
= Kj , j = 1, ..., n

and that

ηiNγ
+

i
+ η̂iNγ

−

i
= Kγ,i , i = 1, ..., m

are constant in time, for the evolution expressed by Eqs.(33). Because n ≥ m + 1,
there are sufficiently many conserved quantities, and they are independent since each
of them depends on the concentration of a real chemical which does not appear in
any other conserved quantity. Thus, there is a unique solution for the concentra-
tions of the virtual chemicals in terms of the real chemicals concentrations and of
conserved quantities:

Nγ
−

i
=

∑

j=r1,r2,...,rm

zj(Kj − Nj) , i = 1, ..., m (34)

where the constants zj are determined by the stoichiometric coefficients, and the
indexes rℓ label the real m chemicals which have been chosen. Similarly, one has
N ′

γ
−

i

=
∑

j zj(Kj − N ′
j), and

N ′
γ
−

i

− Nγ
−

i
=

∑

j=r1,r2,...,rm

zj(Nj − N ′
j) . (35)

Therefore, given the initial conditions, which fix the values of the Ki’s, the effect of
Υ̃ on the virtual chemicals may be replaced by its effect on the real chemicals, which
is the same effect produced by the full map Υ. This can be used in the calculation
of the variation of the Shannon entropy, as follows.

Observe that S (N ) =
∑n

j=1 S(Nj)+
∑m

j=1[S(Nγ
−

j
)+ S(Nγ

+

j
)], grows under the

action of Υ̃, unless N is fixed for Υ̃. Indeed, each single reaction map increases
the sum of the entropies of the virtual and real chemicals of its concern, and acts
as the identity on the other chemicals. If the state is fixed for all Υ̃(i), then it is
fixed for Υ̃ and is fixed also for the full Boltzmann map Υ. If N is not fixed for
Υ̃(i), it is not fixed for the corresponding Boltzmann map τ̃ (i). Therefore one has
S (Υ̃(i) N ) > S (N ), and

S (Υ̃ N ) = S

(

m
∑

i=1

λiΥ̃
(i) N

)

≥
m
∑

i=1

λiS

(

Υ̃(i) N
)

> S (N ) (36)

In terms of single chemical entropies, one may write

n
∑

j=1

S(N ′
j) +

m
∑

i=1

[

S(N ′
γ
+

i

) + S(N ′
γ
−

i

)
]

>
n
∑

j=1

S(Nj) +
m
∑

i=1

[

S(Nγ+

i
) + S(Nγ−

i
)
]

(37)
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where the dashes denote the values after one application of Υ̃. The variation of the
entropy of Nγ−

i
, can now be expressed as

S(N ′
γ
−

i

) − S(Nγ
−

i
) = −

∞
∑

k=0

p′
γ
−

i

(k) log p′
γ
−

i

(k) +

∞
∑

k=0

pγ
−

i
(k) log pγ

−

i
(k)

=
∞
∑

k=0

p′
γ
−

i

(k)
[

log pγ−

i
(k) − log p′

γ
−

i

(k)
]

−
∞
∑

k=0

p′
γ
−

i

(k) log pγ
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log pγ
−

i
(k)

where ‖ ∗ ‖2 is the ℓ2-norm, and the inequality follows from Kulback’s lemma [19].
Recalling that pX(k) = ak

X(1 − aX) in the LTE states, one obtains

S(Nγ
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i
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i
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Therefore, (37) leads to
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Substituting Eq.(35), one then obtains

n
∑
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This identifies one strict Liapunov function for Υ̃ which evolves the concentrations
of the real chemicals as Υ does, but does not affect the concentrations of the vir-
tual chemicals. Indeed, repeating the same calculations for all virtual chemical
concentrations, one finds that

Ψ(N̂ ) =
n
∑

j=1

S(Nj) +
n
∑

j=1

z̃jNj , (38)
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which is function of the real chemicals N̂ = (N1, N2, ..., Nn) only, is a strict Liapunov

functional for Υ̃. Here the coefficients z̃j depend on the stoichiometric coefficients,
as usual. Becasue the virtual chemicals do not appear in Eq.(38), the application
of the map ξ does not affect Ψ which is, therefore, a strict Liapunov function for
the whole Boltzmann map τ and for the map Υ. This has some consequence, as in
the case of balanced reactions with equal forward and backward reaction constants.
In particular, the following holds:

• The compactness and convexity of the space of concentrations Λ, together with
the strict convexity of Ψ, implies the existence of a unique maximum of Ψ in
Λ;

• the fact that Ψ is a strict Liapunov function for Υ, implies that its point of
maximum, Ñ say, is a fixed point of Υ;

• then, Ñ is a stable fixed point;
• the fixed points of Υ and of the corresponding continuous time evolution are

the same, and the results for the map hold for sufficiently small time steps,
i.e. for sufficiently small µi’s in Eqs.(33), therefore the associated ODE also
has a unique, stable fixed point.

The above arguments can be generalized to the case with more than two fixed
concentrations, in a single reaction, so that fluxes of real chemicals can be treated
within the same framework. In that case, Cj may be treated like a virtual chemical,
as long as there are sufficiently many quantities conserved by the action of Υ. As a
matter of fact, the above arguments apply to all networks with as many independent
quantities conserved by Υ, as many single reactions with (real or virtual) chemicals
with fixed concentrations. Therefore, dependent networks can be considered, as
long as the dependence concerns stoichiometrically balanced reactions with equal
forward and backward reaction constants. We conclude that:

Remark 2. Multistability is not possible in networks of linearly independent
activity-led reactions. These systems have one quantity conserved by Υ for each
chemical that is conserved (virtual or real), and the resulting system of equations is
linearly independent allowing only one set of solutions for the conserved chemicals
in terms of the evolving ones.

Violating this condition is therefore a necessary condition for multistability.

4.1. Fixed points and their stability. For the identification of the fixed points,
consider first systems which have no fixed concentrations, i.e. systems of stoichio-
metrically balanced reactions with equal forward and backward reaction constants.
The Liapunov functional is the entropy S . Assume that the system is at the equi-
librium p̃: τ p̃ =

∑m
i=1 λiτ

(i)p̃ = p̃ and that at least one reaction is not, τ (i)p̃ 6= p̃.

Then, S (τ (i)p̃) > S (p̃) and

S (τ p̃) = S

(

m
∑

i=1

λiτ
(i)p̃

)

≥
m
∑

i=1

λiS (τ (i)p̃) > S (p̃),

which is in disagreement with the assumed equilibrium. Then, the fixed point p̃ is
fixed for τ if and only if it is fixed for each single reaction τ (i). The corresponding
fixed concentration Ñ is stable, because the entropy cannot decrease, hence the sets
Λs = {N ∈ Λ : S (N ) ≥ s} are invariant closed convex subsets of Λ, with Λ

S̃
= Ñ

and Λs = ∅ for s > S̃ . Therefore, for every ǫ > 0, there is s ∈ [Smin, S̃ ) such that



REACTIONS MULTI-STABILITY PROBLEM 521

Λs is contained in the ball of radius ǫ centered at Ñ , Bǫ(N ) say, where Smin is the
absolute minimum of the Shannon entropy in Λ.

A similar argument holds for the stability of the unique fixed point of a general
system of linearly independent reactions, because the Liapunov functional Ψ enjoys
properties similar to those of S .

These considerations substantially simplify the search for steady states. For
instance, let the evolution be given by Eqs.(33), then the fixed point is not merely
identified by the solutions of

m
∑

i=1

µi(α
j
i − α̂j

i )Di(N1, . . . , Nn) = 0 , j = 1, . . . , n (39)

but by the system of equations

Di(N1, . . . , Nn) = 0 , i = 1, . . . , m

within the phase space Λ identified by the conserved quantities.

5. Physical interpretation. It is important to point out that Ni(∆V ), the num-
ber of particles that we can expect in a volume ∆V , is an extensive quantity, while
the probability of finding j molecules of chemical Ci in ∆V , pi(j; ∆V ) say, is not
extensive,6 but may still depend on ∆V . The activity ai and the concentration of a
chemical, ρi = Ni

∆V
, are not extensive as well, but do not depend on ∆V , indeed they

ought to be intensive quantities. Introducing ∆Vi,min as the minimum volume that
may contain the substance Ci, e.g. the volume of one molecule of Ci, one obtains
∑∞

j=0 jpi(j; ∆Vi,min) ≤ 1, and

ρi,max =
1

∆Vi,min

(40)

for the maximum concentration of Ci. To correctly interpret the meaning of the
quantities used so far, one should then keep in mind that they must be referred to
the volume in which the reactions take place. In particular, the activity ai should
be written as

ai(∆V ) =
Ni(∆V )

1 + Ni(∆V )
(41)

which raises the question of which volume has been implicitly assumed in the previ-
ous papers on activity-led reactions [16, 13]. Although this may be a conventional
choice, which does not affect the results, the question is relevant to identify the
low concentration regime, in which the activities approximately equal the densities.
Dividing by ∆V , in the numerator and in the denominator of Eq.(41), one obtains

ai(∆V ) =
Ni(∆V )

∆V

1
∆V

+ Ni(∆V )
∆V

=
ρi

ρi,ref + ρi

(42)

where ρi,ref is a reference concentration, that may be taken as convenient. In

particular, taking ∆V = ∆Vi,min implies ρi,ref = ρi,max and ai ≤ 1/2. Then,

the reactions turn density-led when ρi ≪ ρi,max, i.e. when ai ≃ ρi

ρi,max
≪ 1, or

∑∞
j=0 jpi(j; ∆Vi,min) ≪ 1. One may then introduce

∆Vmin = max{∆V1,min, . . . , ∆Vn,min},

6For instance, pi(j;∆V ) is bounded from above by 1.
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and refer all quantities to this volume. Quite obviously, the formalism thus pro-
duced, will seldom substantially differ from the density-led case, therefore, the re-
sults obtained above for activity-led reactions apply to the density-led cases with a
high degree of accuracy. The larger ∆Vmin is, the easier it will be for activity-led
evolutions to differ from the corresponding density-led behaviours.

With this in mind, the activity-led evolution of 2A
k̃
⇋
k̃

B+γ−, for instance, which

is given by N ′
A = NA − 2µ(a2

A − aBaγ−), with µ = k̃∆t, may be rewritten as

N ′
A = NA − 2µ







(

ρA

ρA,ref + ρA

)2

−

(

ρB

ρB,ref + ρB

)(

ργ−

ργ−,ref + ργ−

)







If, one takes ∆Vmin = max{∆VA,min, ∆VB,min} and ρA,ref = ρB,ref = ργ−,ref =
ρmax then ρA, ρB, ργ− ≪ ρmax yields, with good approxiation, the evolution

ρ′A = ρA − 2
µ

ρmax

(ρ2
A − ρBργ−)

which is the Euler approximation for the ODE representing the law of mass action.
The reaction constants are then given by

k+ =
µ

∆tρmax

, k− =
µργ+

∆tρmax

.

One may easily work out the general expression of the reaction constants, in terms
of the parameters.

According to Eq.(41) and Eq.(42), the Liapunov functional Eq.(38) can be writ-
ten as

Ψ(ρ̂) =

n
∑

j=1

S̃(ρj) +

n
∑

j=1

z̃j

ρmax

ρj (43)

where ρ̂ = (ρ1, ρ2, ..., ρn) and S̃(ρj) = S
(

ρj

ρmax

)

. For 2A
k̃
⇋
k̃

B + γ− the Liapunov

functional becomes:

Ψ(ρ̂) = S̃(ρA) + S̃(ρB) +
ρA

ρmax

log

(

ργ

ρmax + ργ

)

where ργ is the fixed concentration of the virtual chemicals.
This analysis indicates that the physical meaning of the quantities which we have

called “activities” depends on the choice of the reference volume or, equivalently, of
the reference density. Indeed, once ∆Vmin and ρmax have been fixed, the activities
become intensive quantities, as they are supposed to be. However, there is a certain
degree of arbitrariness in choosing those reference parameters. Indeed, they can be
taken arbitrarily small or large, as long as they are positive finite numbers, without
affecting the qualitative results obtained so far. Quantitatively, instead, the results
do depend on the choice of the reference parameters, therefore, they must be chosen
case by case, in such a way that the corresponding physics is properly reproduced.

The most obvious case that needs to be considered, is the density-led case. To
obtain ρi ≪ ρmax for the whole time evolution, so that the dynamics is effectively
density-led, it suffices to take ρmax ≫ ρi,max for all i ∈ {1, . . . , n}. Less, indeed, is
necessary, because of the conservation of mass: it suffices to take ρmax ≥ N̄i/∆V for
all i’s, where N̄i is the maximum number of Ci particles, compatible with the initial
conditions. Whether a reaction should be density or activity led, or of a different
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kind, cannot be decided within the mathematical theory; it is determined by the
physical nature of the system. The simulation of the density-led reactions through
the activity-led reactions can be made arbitrarily accurate by taking sufficiently
large ρmax. This, leads us to the following conclusions:

Proposition 3. Density-led as well as activity-led networks of reactions, with
nonvanishing forward and backward reaction constants, which are independent, or
have as many independent conserved quantities as conserved concentrations, have a
unique fixed point, which is stable. This holds also for open systems, with fluxes of
matter that keep certain concentrations fixed.

Hence multistability, if possible at all in these cases, requires more than feedbacks
and coupling with the outer environment.

Remark 3. For multistability in independent networks, it is necessary to have
some vanishing reaction constants, or different couplings with the environment.
Alternatively, kinetic laws not consistent with the law of mass action are required.

The possibility that some reaction constants vanish is excluded, in the present
framework, by the fact that the corresponding reaction operators, T , would not be
doubly stochastic [13]. Some of these cases, have however been investigated, and
no multistability has been evidenced [17].

The cases with some vanishing constants of motion, as well as the case of depen-
dent networks will be studied in detail in a future paper. In the next section, we
only consider some example, which illustrate what may happen, in general.

6. Concluding remarks and open questions. In this paper, systems of reac-
tions have been investigated generalizing previous results about Boltzmann maps
[19, 16, 13]. Two families of reactions have been identified: linearly independent and
linearly dependent ones. The independent ones have been understood in the cases
with non-vanishing reaction rates, thanks to the construction of a strict Liapunov
functional. These systems always have just one stable stationary point. Vanishing
reaction rates, however, can induce limit cycles, as in the case of the brussellator
[18, 17]:

A
k1→ Z

B + Z
k2→ Y + D

2Z + Y
k3→ 3Z

Z
k4→ E

Here, the chemicals A and B are kept constant while the dynamics of the chemicals
Z and Y are decoupled from those of D and E. In the activity-led formalism, the
resulting equations for chemicals Z and Y are

daZ

dt
= (k1aA − k2aBaZ + k3a

2
ZaY − k4aZ)(1 − aZ)2

daY

dt
= (k2aBaZ − k3a

2
ZaY )(1 − aY )2

(44)

With parameters k1 = 5/16, k2 = 3/8, k3 = 1/4, k4 = 5/64, aA = 1/8 and aB =
1/4, this evolution has limit cycles but no multistability [17]. Similar conclusions
ought to hold for the more general case of X-led reactions, although the existence of
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a Liapunov functional for networks of X-led reactions has not been proven. Indeed,
the generalization of Eq.(44) to generic X-led reactions

dXZ

dt
=

(

df−1

dX

∣

∣

∣

∣

XZ

)−1

(k1XA − k2XBXZ + k3X
2
ZXY − k4XZ)

dXY

dt
=

(

df−1

dX

∣

∣

∣

∣

XY

)−1

(k2XBXZ − k3X
2
ZXY )

(45)

where X = f(ρ), has the same number of fixed points for all choices of X, because
(df−1/dX)−1 is bounded away from zero.

Another class of networks, within which multistable behaviours might be found
is the class of linearly dependent reactions. These networks do not have the Lia-
punov functionals of the linearly independent ones, in general. This is reflected,
for instance, in the fact that in general the stable stationary points of dependent
networks do not lie on the intersection of the manifolds of the stationary points
of the single reactions (Fig.3). This leaves open the possibility that multistability
be found in dependent networks. Therefore, Thomas’ conjecture, which states that

 0
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 1

 0  0.2  0.4  0.6  0.8  1

b

a

stationary point
initial cond a=0.333 b=0.333

 initial cond a=0.1 b=0.6
 initial cond a=0.1 b=0.1

Figure 3. Two-dimensional projection of the phase space of Re-
actions (30), with three evolutions corresponding to different intial
conditions (the lines with ∗, × and �). The stable stationary point
is the point common to all the paths.

feedback loops are necessary for bistability [20], must be associated to one further
necessary condition within the framework of density and activity-led reactions: i.e.
that reaction networks be dependent.

General linearly dependent networks will be investigated in future works. How-
ever, according to our numerical results, it seems that the difference between lin-
early dependent reaction networks and independent networks is only quantitative
and not qualitative. Even linearly dependent reactions seem not to allow multista-
bility. This suggests that the search for multistable behaviours should not be based
on the law of mass action, and not even on simple-minded modifications of the law
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itself. Approximations starting from the law of mass action which end with multi-
stable behaviors (i.e. Michaelis-Menten or Hill procedures ) need to be handled with
care, because they may alter the asymptotic behaviours. This observation is further
supported by our tests with different (X-led) evolution laws, supposed to mimic e.g.
the effects of growing concentrations on the reaction rates. In particular, we have
considered cases in which reaction rates saturate (the activity-led reactions), cases
in which the reaction rates do not saturate, but grow only loagrithmically with
the concentrations, and cases in which the reaction rates do not saturate but grow
as the square root of the concentrations. These cases cover a rather wide range
of possibilities, beyond those given by the law of mass action. The activity-led
case, in particular, looks formally rather close to the Michaelis-Menten evolutions,
but shows multistability neither in the independent networks, nor in the dependent
networks considered here.

Behaviours such as multistability thus seem to require physical properties, that
are unlikely to pertain to the law of mass action and its immediate generalizations.
Connections of the theory outlined in this paper with other approaches such as
those of Michaelis-Menten and Hill will be the subject of future works.
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