Loading [MathJax]/jax/output/SVG/jax.js

Homogenization and correctors for the wave equation in non periodic perforated domains

  • Received: 01 May 2007 Revised: 01 October 2007
  • Primary: 35B27; Secondary: 35L05.

  • We consider here the wave equation in a (not necessarily periodic) perforated domain, with a Neumann condition on the boundary of the holes. Assuming H0-convergence ([3]) on the elliptic part of the operator, we prove two main theorems: a convergence result and a corrector one. To prove the corrector result, we make use of a suitable family of elliptic local correctors given in [4] whose columns are piecewise locally square integrable gradients. As in the case without holes ([2]), some additional assumptions on the data are needed.

    Citation: Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains[J]. Networks and Heterogeneous Media, 2008, 3(1): 97-124. doi: 10.3934/nhm.2008.3.97

    Related Papers:

    [1] Patrizia Donato, Florian Gaveau . Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3(1): 97-124. doi: 10.3934/nhm.2008.3.97
    [2] Grigor Nika, Adrian Muntean . Hypertemperature effects in heterogeneous media and thermal flux at small-length scales. Networks and Heterogeneous Media, 2023, 18(3): 1207-1225. doi: 10.3934/nhm.2023052
    [3] Patrizia Donato, Olivier Guibé, Alip Oropeza . Corrector results for a class of elliptic problems with nonlinear Robin conditions and $ L^1 $ data. Networks and Heterogeneous Media, 2023, 18(3): 1236-1259. doi: 10.3934/nhm.2023054
    [4] Mogtaba Mohammed, Mamadou Sango . Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14(2): 341-369. doi: 10.3934/nhm.2019014
    [5] Rémi Goudey . A periodic homogenization problem with defects rare at infinity. Networks and Heterogeneous Media, 2022, 17(4): 547-592. doi: 10.3934/nhm.2022014
    [6] Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049
    [7] Ben Schweizer, Marco Veneroni . The needle problem approach to non-periodic homogenization. Networks and Heterogeneous Media, 2011, 6(4): 755-781. doi: 10.3934/nhm.2011.6.755
    [8] Renata Bunoiu, Claudia Timofte . Homogenization of a thermal problem with flux jump. Networks and Heterogeneous Media, 2016, 11(4): 545-562. doi: 10.3934/nhm.2016009
    [9] Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343
    [10] Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou . Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568. doi: 10.3934/nhm.2006.1.537
  • We consider here the wave equation in a (not necessarily periodic) perforated domain, with a Neumann condition on the boundary of the holes. Assuming H0-convergence ([3]) on the elliptic part of the operator, we prove two main theorems: a convergence result and a corrector one. To prove the corrector result, we make use of a suitable family of elliptic local correctors given in [4] whose columns are piecewise locally square integrable gradients. As in the case without holes ([2]), some additional assumptions on the data are needed.


  • This article has been cited by:

    1. Mourad Sini, Haibing Wang, Qingyun Yao, Analysis of the Acoustic Waves Reflected by a Cluster of Small Holes in the Time-Domain and the Equivalent Mass Density, 2021, 19, 1540-3459, 1083, 10.1137/20M1319693
    2. Qiao-Li Dong, Li-Qun Cao, Multiscale asymptotic expansions methods and numerical algorithms for the wave equations in perforated domains, 2014, 232, 00963003, 872, 10.1016/j.amc.2013.12.112
    3. Mogtaba Mohammed, Mamadou Sango, Homogenization of Neumann problem for hyperbolic stochastic partial differential equations in perforated domains, 2016, 97, 18758576, 301, 10.3233/ASY-151355
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3847) PDF downloads(124) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog