Loading [MathJax]/jax/output/SVG/jax.js

Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain

  • Received: 01 April 2008
  • Primary: 35B27; Secondary: 55M25.

  • Let A be an annular type domain in R2. Let Aδ be a perforated domain obtained by punching periodic holes of size δ in A; here, δ is sufficiently small. Suppose that \J is the class of complex-valued maps in Aδ, of modulus 1 on Aδ and of degrees 1 on the components of A, respectively 0 on the boundaries of the holes.

    We consider the existence of a minimizer of the Ginzburg-Landau energy

    Eλ(u)=1\2[Aδ](|u|2+λ2(1|u|2)2)
    among all maps in u\J.

    It turns out that, under appropriate assumptions on λ=λ(δ), existence is governed by the asymptotic behavior of the H1-capacity of Aδ. When the limit of the capacities is >π, we show that minimizers exist and that they are, when δ0, equivalent to minimizers of the same problem in the subclass of \J formed by the S1-valued maps. This result parallels the one obtained, for a fixed domain, in [3], and reduces homogenization of the Ginzburg-Landau functional to the one of harmonic maps, already known from [2].

    When the limit is <π, we prove that, for small δ, the minimum is not attained, and that minimizing sequences develop vortices. In the case of a fixed domain, this was proved in [1].

    Citation: Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain[J]. Networks and Heterogeneous Media, 2008, 3(3): 461-487. doi: 10.3934/nhm.2008.3.461

    Related Papers:

    [1] Leonid Berlyand, Petru Mironescu . Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3(3): 461-487. doi: 10.3934/nhm.2008.3.461
    [2] Mickaël Dos Santos, Oleksandr Misiats . Ginzburg-Landau model with small pinning domains. Networks and Heterogeneous Media, 2011, 6(4): 715-753. doi: 10.3934/nhm.2011.6.715
    [3] Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115
    [4] Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip . Renormalized Ginzburg-Landau energy and location of near boundary vortices. Networks and Heterogeneous Media, 2012, 7(1): 179-196. doi: 10.3934/nhm.2012.7.179
    [5] Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010
    [6] Gabriela Jaramillo . Inhomogeneities in 3 dimensional oscillatory media. Networks and Heterogeneous Media, 2015, 10(2): 387-399. doi: 10.3934/nhm.2015.10.387
    [7] Martin Heida . Stochastic homogenization on perforated domains III–General estimates for stationary ergodic random connected Lipschitz domains. Networks and Heterogeneous Media, 2023, 18(4): 1410-1433. doi: 10.3934/nhm.2023062
    [8] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . Homogenization of variational functionals with nonstandard growth in perforated domains. Networks and Heterogeneous Media, 2010, 5(2): 189-215. doi: 10.3934/nhm.2010.5.189
    [9] Martin Heida . Stochastic homogenization on perforated domains Ⅰ – Extension Operators. Networks and Heterogeneous Media, 2023, 18(4): 1820-1897. doi: 10.3934/nhm.2023079
    [10] Oleh Krehel, Toyohiko Aiki, Adrian Muntean . Homogenization of a thermo-diffusion system with Smoluchowski interactions. Networks and Heterogeneous Media, 2014, 9(4): 739-762. doi: 10.3934/nhm.2014.9.739
  • Let A be an annular type domain in R2. Let Aδ be a perforated domain obtained by punching periodic holes of size δ in A; here, δ is sufficiently small. Suppose that \J is the class of complex-valued maps in Aδ, of modulus 1 on Aδ and of degrees 1 on the components of A, respectively 0 on the boundaries of the holes.

    We consider the existence of a minimizer of the Ginzburg-Landau energy

    Eλ(u)=1\2[Aδ](|u|2+λ2(1|u|2)2)
    among all maps in u\J.

    It turns out that, under appropriate assumptions on λ=λ(δ), existence is governed by the asymptotic behavior of the H1-capacity of Aδ. When the limit of the capacities is >π, we show that minimizers exist and that they are, when δ0, equivalent to minimizers of the same problem in the subclass of \J formed by the S1-valued maps. This result parallels the one obtained, for a fixed domain, in [3], and reduces homogenization of the Ginzburg-Landau functional to the one of harmonic maps, already known from [2].

    When the limit is <π, we prove that, for small δ, the minimum is not attained, and that minimizing sequences develop vortices. In the case of a fixed domain, this was proved in [1].


  • This article has been cited by:

    1. Alberto Farina, Petru Mironescu, Uniqueness of vortexless Ginzburg-Landau type minimizers in two dimensions, 2013, 46, 0944-2669, 523, 10.1007/s00526-012-0492-5
    2. T. A. Mel’nik, O. A. Sivak, Asymptotic analysis of a parabolic semilinear problem with nonlinear boundary multiphase interactions in a perforated domain, 2010, 164, 1072-3374, 427, 10.1007/s10958-009-9756-9
    3. P. Mironescu, Size of Planar Domains and Existence of Minimizers of the Ginzburg–Landau Energy with Semistiff Boundary Conditions, 2014, 202, 1072-3374, 703, 10.1007/s10958-014-2073-y
    4. Roberto Alicandro, Andrea Braides, Marco Cicalese, Lucia De Luca, Andrey Piatnitski, Topological Singularities in Periodic Media: Ginzburg–Landau and Core-Radius Approaches, 2022, 243, 0003-9527, 559, 10.1007/s00205-021-01731-7
    5. Mickaël Dos Santos, Oleksandr Misiats, Ginzburg-Landau model with small pinning domains, 2011, 6, 1556-181X, 715, 10.3934/nhm.2011.6.715
    6. MICKAËL DOS SANTOS, PETRU MIRONESCU, OLEKSANDR MISIATS, THE GINZBURG–LANDAU FUNCTIONAL WITH A DISCONTINUOUS AND RAPIDLY OSCILLATING PINNING TERM. PART I: THE ZERO DEGREE CASE, 2011, 13, 0219-1997, 885, 10.1142/S021919971100449X
    7. Christos Sourdis, Optimal potential energy growth lower bounds for minimizing solutions to the vectorial Allen-Cahn equation in two space dimensions, 2018, 41, 01704214, 966, 10.1002/mma.4009
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3801) PDF downloads(61) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog