Research article

Stochastic homogenization on perforated domains III–General estimates for stationary ergodic random connected Lipschitz domains

  • Received: 25 July 2022 Revised: 17 April 2023 Accepted: 27 April 2023 Published: 06 June 2023
  • This is Part III of a series on the existence of uniformly bounded extension operators on randomly perforated domains in the context of homogenization theory. Recalling that randomly perforated domains are typically not John and hence extension is possible only from $ W^{1, p} $ to $ W^{1, r} $, $ r < p $, we will show that the existence of such extension operators can be guaranteed if the weighted expectations of four geometric characterizing parameters are bounded: The local Lipschitz constant $ M $, the local inverse Lipschitz radius $ \delta^{-1} $ resp. $ \rho^{-1} $, the mesoscopic Voronoi diameter $ {\mathfrak{d}} $ and the local connectivity radius $ {\mathscr{R}} $.

    Citation: Martin Heida. Stochastic homogenization on perforated domains III–General estimates for stationary ergodic random connected Lipschitz domains[J]. Networks and Heterogeneous Media, 2023, 18(4): 1410-1433. doi: 10.3934/nhm.2023062

    Related Papers:

  • This is Part III of a series on the existence of uniformly bounded extension operators on randomly perforated domains in the context of homogenization theory. Recalling that randomly perforated domains are typically not John and hence extension is possible only from $ W^{1, p} $ to $ W^{1, r} $, $ r < p $, we will show that the existence of such extension operators can be guaranteed if the weighted expectations of four geometric characterizing parameters are bounded: The local Lipschitz constant $ M $, the local inverse Lipschitz radius $ \delta^{-1} $ resp. $ \rho^{-1} $, the mesoscopic Voronoi diameter $ {\mathfrak{d}} $ and the local connectivity radius $ {\mathscr{R}} $.



    加载中


    [1] D. J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes, New York: Springer, 1988.
    [2] R. G. Durán, M. A. Muschietti, The Korn inequality for Jones domains, Electron. J. Differ. Equ., 2004 (2004), 1–10.
    [3] N. Guillen, I. Kim, Quasistatic droplets in randomly perforated domains, Arch Ration Mech Anal, 215 (2015), 211–281.
    [4] M. Heida, An extension of the stochastic two-scale convergence method and application, Asymptot. Anal., 72 (2011), 1–30. https://doi.org/10.1097/INF.0b013e3181f1e704 doi: 10.1097/INF.0b013e3181f1e704
    [5] M. Heida, Stochastic homogenization on perforated domains I: Extension operators, arXiv: 2105.10945, [Preprint], (2021) [cited 2023 June 06 ]. Available from: https://arXiv.org/abs/2105.10945
    [6] M. Heida, Stochastic homogenization on perforated domains II–application to nonlinear elasticity models, Z Angew Math Mech, 102 (2022), e202100407.
    [7] M. Höpker, Extension Operators for Sobolev Spaces on Periodic Domains, Their Applications, and Homogenization of a Phase Field Model for Phase Transitions in Porous Media, (German), Doctoral Thesis of University Bremen, Bremen, 2016.
    [8] P. W. Jones, Quasiconformal mappings and extendability of functions in sobolev spaces, Acta Math., 147 (1981), 71–88. https://doi.org/10.1007/BF02392869 doi: 10.1007/BF02392869
    [9] J. Mecke, Stationäre zufällige Maße auf lokalkompakten abelschen Gruppen, Probab Theory Relat, 9 (1967), 36–58. https://doi.org/10.1007/BF00535466 doi: 10.1007/BF00535466
    [10] A. Piatnitski, M. Ptashnyk, Homogenization of biomechanical models of plant tissues with randomly distributed cells, Nonlinearity, 33 (2020), 5510. https://doi.org/10.1088/1361-6544/ab95ab doi: 10.1088/1361-6544/ab95ab
    [11] A.A. Tempel'man, Ergodic theorems for general dynamical systems, Trudy Moskovskogo Matematicheskogo Obshchestva, 26 (1972), 95–132.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1124) PDF downloads(206) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog