A second order model of road junctions in fluid models of traffic networks

  • Received: 01 July 2006 Revised: 01 January 2007
  • Primary: 35L; Secondary: 35L65.

  • This article deals with the modeling of junctions in a road network from a macroscopic point of view. After reviewing the Aw & Rascle second order model, a compatible junction model is proposed. The properties of this model and particularly the stability are analyzed. It turns out that this model presents physically acceptable solutions, is able to represent the capacity drop phenomenon and can be used to simulate the traffic evolution on a network.

    Citation: Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks[J]. Networks and Heterogeneous Media, 2007, 2(2): 227-253. doi: 10.3934/nhm.2007.2.227

    Related Papers:

    [1] Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030
    [2] Bertrand Haut, Georges Bastin . A second order model of road junctions in fluid models of traffic networks. Networks and Heterogeneous Media, 2007, 2(2): 227-253. doi: 10.3934/nhm.2007.2.227
    [3] Emiliano Cristiani, Smita Sahu . On the micro-to-macro limit for first-order traffic flow models on networks. Networks and Heterogeneous Media, 2016, 11(3): 395-413. doi: 10.3934/nhm.2016002
    [4] Michael Herty, S. Moutari, M. Rascle . Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1(2): 275-294. doi: 10.3934/nhm.2006.1.275
    [5] Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663
    [6] Simone Göttlich, Camill Harter . A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11(3): 447-469. doi: 10.3934/nhm.2016004
    [7] Alberto Bressan, Khai T. Nguyen . Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10(2): 255-293. doi: 10.3934/nhm.2015.10.255
    [8] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
    [9] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
    [10] Mohamed Benyahia, Massimiliano D. Rosini . A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013
  • This article deals with the modeling of junctions in a road network from a macroscopic point of view. After reviewing the Aw & Rascle second order model, a compatible junction model is proposed. The properties of this model and particularly the stability are analyzed. It turns out that this model presents physically acceptable solutions, is able to represent the capacity drop phenomenon and can be used to simulate the traffic evolution on a network.


  • This article has been cited by:

    1. Paola Goatin, Macroscopic traffic flow modelling: from kinematic waves to autonomous vehicles, 2023, 14, 2038-0909, 1, 10.2478/caim-2023-0001
    2. Simone Göttlich, Peter Schillen, Numerical Feedback Stabilization with Applications to Networks, 2017, 2017, 1026-0226, 1, 10.1155/2017/6896153
    3. Celine Parzani, Christine Buisson, Second-Order Model and Capacity Drop at Merge, 2012, 2315, 0361-1981, 25, 10.3141/2315-03
    4. Simone Göttlich, Michael Herty, Salissou Moutari, Jennifer Weissen, Second-Order Traffic Flow Models on Networks, 2021, 81, 0036-1399, 258, 10.1137/20M1339908
    5. G. Costeseque, J.P. Lebacque, Intersection Modeling using a Convergent Scheme based on Hamilton-Jacobi Equation, 2012, 54, 18770428, 736, 10.1016/j.sbspro.2012.09.791
    6. Ke Han, Benedetto Piccoli, Terry L. Friesz, Continuity of the path delay operator for dynamic network loading with spillback, 2016, 92, 01912615, 211, 10.1016/j.trb.2015.09.009
    7. Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001
    8. Oliver Kolb, Guillaume Costeseque, Paola Goatin, Simone Göttlich, Pareto-Optimal Coupling Conditions for the Aw--Rascle--Zhang Traffic Flow Model at Junctions, 2018, 78, 0036-1399, 1981, 10.1137/17M1136900
    9. S. Amin, F. M. Hante, A. M. Bayen, Exponential Stability of Switched Linear Hyperbolic Initial-Boundary Value Problems, 2012, 57, 0018-9286, 291, 10.1109/TAC.2011.2158171
    10. Christophe Prieur, Frederic Mazenc, 2011, ISS Lyapunov functions for time-varying hyperbolic partial differential equations, 978-1-61284-801-3, 4915, 10.1109/CDC.2011.6160401
    11. Christophe PRIEUR, Antoine GIRARD, Emmanuel WITRANT, Lyapunov functions for switched linear hyperbolic systems, 2012, 45, 14746670, 382, 10.3182/20120606-3-NL-3011.00041
    12. Jennifer McCrea, Salissou Moutari, A hybrid macroscopic-based model for traffic flow in road networks, 2010, 207, 03772217, 676, 10.1016/j.ejor.2010.05.018
    13. Florian Siebel, Wolfram Mauser, Salissou Moutari, Michel Rascle, 2009, Chapter 18, 978-3-540-77073-2, 201, 10.1007/978-3-540-77074-9_18
    14. Ying Tang, Christophe Prieur, Antoine Girard, Singular Perturbation Approximation of Linear Hyperbolic Systems of Balance Laws, 2016, 61, 0018-9286, 3031, 10.1109/TAC.2015.2499444
    15. Yaroslav Aleksandrovich Kholodov, Andrey Evgen'evich Alekseenko, Mikhail Olegovich Vasilev, Alexander Sergeevich Kholodov, Developing the mathematical model of road junction by the hydrodynamic approach, 2014, 6, 20767633, 503, 10.20537/2076-7633-2014-6-4-503-522
    16. Saurabh Amin, Falk M. Hante, Alexandre M. Bayen, 2008, Stability analysis of linear hyperbolic systems with switching parameters and boundary conditions, 978-1-4244-3123-6, 2081, 10.1109/CDC.2008.4739181
    17. Florian Siebel, Wolfram Mauser, Salissou Moutari, Michel Rascle, Balanced vehicular traffic at a bottleneck, 2009, 49, 08957177, 689, 10.1016/j.mcm.2008.01.006
    18. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    19. G. Bretti, R. Natalini, M. Ribot, A hyperbolic model of chemotaxis on a network: a numerical study, 2014, 48, 0764-583X, 231, 10.1051/m2an/2013098
    20. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 4, 978-3-030-93014-1, 73, 10.1007/978-3-030-93015-8_4
    21. Zhiyang Lin, S. C. Wong, Xiaoning Zhang, Peng Zhang, Higher-Order Traffic Flow Model Extended to Road Networks, 2023, 149, 2473-2907, 10.1061/JTEPBS.TEENG-7556
    22. Ying Tang, Christophe Prieur, Antoine Girard, 2014, Boundary control synthesis for hyperbolic systems: A singular perturbation approach, 978-1-4673-6090-6, 2840, 10.1109/CDC.2014.7039825
    23. Simone Göttlich, Ute Ziegler, Michael Herty, Numerical discretization of Hamilton--Jacobi equations on networks, 2013, 8, 1556-181X, 685, 10.3934/nhm.2013.8.685
    24. Mapundi K. Banda, Axel-Stefan Häck, Michael Herty, Numerical Discretization of Coupling Conditions by High-Order Schemes, 2016, 69, 0885-7474, 122, 10.1007/s10915-016-0185-x
    25. Joshua Buli, Yulong Xing, A discontinuous Galerkin method for the Aw-Rascle traffic flow model on networks, 2020, 406, 00219991, 109183, 10.1016/j.jcp.2019.109183
    26. Pierre-Olivier Lamare, Antoine Girard, Christophe Prieur, Switching Rules for Stabilization of Linear Systems of Conservation Laws, 2015, 53, 0363-0129, 1599, 10.1137/140953952
    27. Wen-Long Jin, A Riemann solver for a system of hyperbolic conservation laws at a general road junction, 2017, 98, 01912615, 21, 10.1016/j.trb.2016.12.007
    28. Oliver Kolb, Simone Göttlich, Paola Goatin, Capacity drop and traffic control for a second order traffic model, 2017, 12, 1556-181X, 663, 10.3934/nhm.2017027
    29. Rinaldo M. Colombo, Francesca Marcellini, Michel Rascle, A 2-Phase Traffic Model Based on a Speed Bound, 2010, 70, 0036-1399, 2652, 10.1137/090752468
    30. Donghua Long, 2022, Prediction of Urban Rail Road Network Scale on Account of Genetic Algorithm, 978-1-6654-0902-5, 1179, 10.1109/IPEC54454.2022.9777389
    31. Christophe Prieur, Frédéric Mazenc, ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws, 2012, 24, 0932-4194, 111, 10.1007/s00498-012-0074-2
    32. Jennifer Weissen, Oliver Kolb, Simone Göttlich, A combined first and second order model for a junction with ramp buffer, 2022, 8, 2426-8399, 349, 10.5802/smai-jcm.90
    33. Ghada Ben Belgacem, Chaker Jammazi, On the finite-time boundary dissipative for a class of hyperbolic systems. The networks example, 2016, 49, 24058963, 186, 10.1016/j.ifacol.2016.07.435
    34. Pierre-Olivier Lamare, Antoine Girard, Christophe Prieur, 2013, Lyapunov techniques for stabilization of switched linear systems of conservation laws, 978-1-4673-5717-3, 448, 10.1109/CDC.2013.6759922
    35. Paola Goatin, Alexandra Würth, The initial boundary value problem for second order traffic flow models with vacuum: Existence of entropy weak solutions, 2023, 233, 0362546X, 113295, 10.1016/j.na.2023.113295
    36. Wei Chen, Shumo Cui, Kailiang Wu, Tao Xiong, Bound-preserving OEDG schemes for Aw–Rascle–Zhang traffic models on networks, 2025, 520, 00219991, 113507, 10.1016/j.jcp.2024.113507
    37. Michael Herty, Niklas Kolbe, Data‐driven models for traffic flow at junctions, 2024, 47, 0170-4214, 8946, 10.1002/mma.10053
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3692) PDF downloads(83) Cited by(37)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog