1.
|
Paola Goatin,
Macroscopic traffic flow modelling: from kinematic waves to autonomous vehicles,
2023,
14,
2038-0909,
1,
10.2478/caim-2023-0001
|
|
2.
|
Simone Göttlich, Peter Schillen,
Numerical Feedback Stabilization with Applications to Networks,
2017,
2017,
1026-0226,
1,
10.1155/2017/6896153
|
|
3.
|
Celine Parzani, Christine Buisson,
Second-Order Model and Capacity Drop at Merge,
2012,
2315,
0361-1981,
25,
10.3141/2315-03
|
|
4.
|
Simone Göttlich, Michael Herty, Salissou Moutari, Jennifer Weissen,
Second-Order Traffic Flow Models on Networks,
2021,
81,
0036-1399,
258,
10.1137/20M1339908
|
|
5.
|
G. Costeseque, J.P. Lebacque,
Intersection Modeling using a Convergent Scheme based on Hamilton-Jacobi Equation,
2012,
54,
18770428,
736,
10.1016/j.sbspro.2012.09.791
|
|
6.
|
Ke Han, Benedetto Piccoli, Terry L. Friesz,
Continuity of the path delay operator for dynamic network loading with spillback,
2016,
92,
01912615,
211,
10.1016/j.trb.2015.09.009
|
|
7.
|
Mauro Garavello, Benedetto Piccoli,
Conservation laws on complex networks,
2009,
26,
0294-1449,
1925,
10.1016/j.anihpc.2009.04.001
|
|
8.
|
Oliver Kolb, Guillaume Costeseque, Paola Goatin, Simone Göttlich,
Pareto-Optimal Coupling Conditions for the Aw--Rascle--Zhang Traffic Flow Model at Junctions,
2018,
78,
0036-1399,
1981,
10.1137/17M1136900
|
|
9.
|
S. Amin, F. M. Hante, A. M. Bayen,
Exponential Stability of Switched Linear Hyperbolic Initial-Boundary Value Problems,
2012,
57,
0018-9286,
291,
10.1109/TAC.2011.2158171
|
|
10.
|
Christophe Prieur, Frederic Mazenc,
2011,
ISS Lyapunov functions for time-varying hyperbolic partial differential equations,
978-1-61284-801-3,
4915,
10.1109/CDC.2011.6160401
|
|
11.
|
Christophe PRIEUR, Antoine GIRARD, Emmanuel WITRANT,
Lyapunov functions for switched linear hyperbolic systems,
2012,
45,
14746670,
382,
10.3182/20120606-3-NL-3011.00041
|
|
12.
|
Jennifer McCrea, Salissou Moutari,
A hybrid macroscopic-based model for traffic flow in road networks,
2010,
207,
03772217,
676,
10.1016/j.ejor.2010.05.018
|
|
13.
|
Florian Siebel, Wolfram Mauser, Salissou Moutari, Michel Rascle,
2009,
Chapter 18,
978-3-540-77073-2,
201,
10.1007/978-3-540-77074-9_18
|
|
14.
|
Ying Tang, Christophe Prieur, Antoine Girard,
Singular Perturbation Approximation of Linear Hyperbolic Systems of Balance Laws,
2016,
61,
0018-9286,
3031,
10.1109/TAC.2015.2499444
|
|
15.
|
Yaroslav Aleksandrovich Kholodov, Andrey Evgen'evich Alekseenko, Mikhail Olegovich Vasilev, Alexander Sergeevich Kholodov,
Developing the mathematical model of road junction by the hydrodynamic approach,
2014,
6,
20767633,
503,
10.20537/2076-7633-2014-6-4-503-522
|
|
16.
|
Saurabh Amin, Falk M. Hante, Alexandre M. Bayen,
2008,
Stability analysis of linear hyperbolic systems with switching parameters and boundary conditions,
978-1-4244-3123-6,
2081,
10.1109/CDC.2008.4739181
|
|
17.
|
Florian Siebel, Wolfram Mauser, Salissou Moutari, Michel Rascle,
Balanced vehicular traffic at a bottleneck,
2009,
49,
08957177,
689,
10.1016/j.mcm.2008.01.006
|
|
18.
|
Zlatinka Dimitrova,
Flows of Substances in Networks and Network Channels: Selected Results and Applications,
2022,
24,
1099-4300,
1485,
10.3390/e24101485
|
|
19.
|
G. Bretti, R. Natalini, M. Ribot,
A hyperbolic model of chemotaxis on a network: a numerical study,
2014,
48,
0764-583X,
231,
10.1051/m2an/2013098
|
|
20.
|
Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli,
2022,
Chapter 4,
978-3-030-93014-1,
73,
10.1007/978-3-030-93015-8_4
|
|
21.
|
Zhiyang Lin, S. C. Wong, Xiaoning Zhang, Peng Zhang,
Higher-Order Traffic Flow Model Extended to Road Networks,
2023,
149,
2473-2907,
10.1061/JTEPBS.TEENG-7556
|
|
22.
|
Ying Tang, Christophe Prieur, Antoine Girard,
2014,
Boundary control synthesis for hyperbolic systems: A singular perturbation approach,
978-1-4673-6090-6,
2840,
10.1109/CDC.2014.7039825
|
|
23.
|
Simone Göttlich, Ute Ziegler, Michael Herty,
Numerical discretization of Hamilton--Jacobi equations on networks,
2013,
8,
1556-181X,
685,
10.3934/nhm.2013.8.685
|
|
24.
|
Mapundi K. Banda, Axel-Stefan Häck, Michael Herty,
Numerical Discretization of Coupling Conditions by High-Order Schemes,
2016,
69,
0885-7474,
122,
10.1007/s10915-016-0185-x
|
|
25.
|
Joshua Buli, Yulong Xing,
A discontinuous Galerkin method for the Aw-Rascle traffic flow model on networks,
2020,
406,
00219991,
109183,
10.1016/j.jcp.2019.109183
|
|
26.
|
Pierre-Olivier Lamare, Antoine Girard, Christophe Prieur,
Switching Rules for Stabilization of Linear Systems of Conservation Laws,
2015,
53,
0363-0129,
1599,
10.1137/140953952
|
|
27.
|
Wen-Long Jin,
A Riemann solver for a system of hyperbolic conservation laws at a general road junction,
2017,
98,
01912615,
21,
10.1016/j.trb.2016.12.007
|
|
28.
|
Oliver Kolb, Simone Göttlich, Paola Goatin,
Capacity drop and traffic control for a second order traffic model,
2017,
12,
1556-181X,
663,
10.3934/nhm.2017027
|
|
29.
|
Rinaldo M. Colombo, Francesca Marcellini, Michel Rascle,
A 2-Phase Traffic Model Based on a Speed Bound,
2010,
70,
0036-1399,
2652,
10.1137/090752468
|
|
30.
|
Donghua Long,
2022,
Prediction of Urban Rail Road Network Scale on Account of Genetic Algorithm,
978-1-6654-0902-5,
1179,
10.1109/IPEC54454.2022.9777389
|
|
31.
|
Christophe Prieur, Frédéric Mazenc,
ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws,
2012,
24,
0932-4194,
111,
10.1007/s00498-012-0074-2
|
|
32.
|
Jennifer Weissen, Oliver Kolb, Simone Göttlich,
A combined first and second order model for a junction with ramp buffer,
2022,
8,
2426-8399,
349,
10.5802/smai-jcm.90
|
|
33.
|
Ghada Ben Belgacem, Chaker Jammazi,
On the finite-time boundary dissipative for a class of hyperbolic systems. The networks example,
2016,
49,
24058963,
186,
10.1016/j.ifacol.2016.07.435
|
|
34.
|
Pierre-Olivier Lamare, Antoine Girard, Christophe Prieur,
2013,
Lyapunov techniques for stabilization of switched linear systems of conservation laws,
978-1-4673-5717-3,
448,
10.1109/CDC.2013.6759922
|
|
35.
|
Paola Goatin, Alexandra Würth,
The initial boundary value problem for second order traffic flow models with vacuum: Existence of entropy weak solutions,
2023,
233,
0362546X,
113295,
10.1016/j.na.2023.113295
|
|
36.
|
Wei Chen, Shumo Cui, Kailiang Wu, Tao Xiong,
Bound-preserving OEDG schemes for Aw–Rascle–Zhang traffic models on networks,
2025,
520,
00219991,
113507,
10.1016/j.jcp.2024.113507
|
|
37.
|
Michael Herty, Niklas Kolbe,
Data‐driven models for traffic flow at junctions,
2024,
47,
0170-4214,
8946,
10.1002/mma.10053
|
|