Optimization criteria for modelling intersections of vehicular traffic flow

  • Received: 01 November 2005 Revised: 01 January 2006
  • Primary: 35L; Secondary: 35L65.

  • We consider coupling conditions for the “Aw–Rascle” (AR) traffic flow model at an arbitrary road intersection. In contrast with coupling conditions previously introduced in [10] and [7], all the moments of the AR system are conserved and the total flux at the junction is maximized. This nonlinear optimization problem is solved completely. We show how the two simple cases of merging and diverging junctions can be extended to more complex junctions, like roundabouts. Finally, we present some numerical results.

    Citation: Michael Herty, S. Moutari, M. Rascle. Optimization criteria for modelling intersections of vehicular traffic flow[J]. Networks and Heterogeneous Media, 2006, 1(2): 275-294. doi: 10.3934/nhm.2006.1.275

    Related Papers:

    [1] Michael Herty, S. Moutari, M. Rascle . Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1(2): 275-294. doi: 10.3934/nhm.2006.1.275
    [2] Michael Herty, J.-P. Lebacque, S. Moutari . A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4(4): 813-826. doi: 10.3934/nhm.2009.4.813
    [3] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
    [4] Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663
    [5] Alberto Bressan, Khai T. Nguyen . Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10(2): 255-293. doi: 10.3934/nhm.2015.10.255
    [6] Simone Göttlich, Camill Harter . A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11(3): 447-469. doi: 10.3934/nhm.2016004
    [7] Adriano Festa, Simone Göttlich, Marion Pfirsching . A model for a network of conveyor belts with discontinuous speed and capacity. Networks and Heterogeneous Media, 2019, 14(2): 389-410. doi: 10.3934/nhm.2019016
    [8] Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040
    [9] Mohamed Benyahia, Massimiliano D. Rosini . A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013
    [10] Michael Herty . Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97. doi: 10.3934/nhm.2007.2.81
  • We consider coupling conditions for the “Aw–Rascle” (AR) traffic flow model at an arbitrary road intersection. In contrast with coupling conditions previously introduced in [10] and [7], all the moments of the AR system are conserved and the total flux at the junction is maximized. This nonlinear optimization problem is solved completely. We show how the two simple cases of merging and diverging junctions can be extended to more complex junctions, like roundabouts. Finally, we present some numerical results.


  • This article has been cited by:

    1. Alessia Marigo, Benedetto Piccoli, A Fluid Dynamic Model for T-Junctions, 2008, 39, 0036-1410, 2016, 10.1137/060673060
    2. Florian Siebel, Wolfram Mauser, Salissou Moutari, Michel Rascle, 2009, Chapter 18, 978-3-540-77073-2, 201, 10.1007/978-3-540-77074-9_18
    3. Oliver Kolb, Guillaume Costeseque, Paola Goatin, Simone Göttlich, Pareto-Optimal Coupling Conditions for the Aw--Rascle--Zhang Traffic Flow Model at Junctions, 2018, 78, 0036-1399, 1981, 10.1137/17M1136900
    4. Jennifer Weissen, Oliver Kolb, Simone Göttlich, A combined first and second order model for a junction with ramp buffer, 2022, 8, 2426-8399, 349, 10.5802/smai-jcm.90
    5. Caterina Balzotti, Maya Briani, Benedetto Piccoli, Emissions minimization on road networks via Generic Second Order Models, 2023, 18, 1556-1801, 694, 10.3934/nhm.2023030
    6. Jennifer McCrea, Salissou Moutari, A hybrid macroscopic-based model for traffic flow in road networks, 2010, 207, 03772217, 676, 10.1016/j.ejor.2010.05.018
    7. Luigi Rarità, Ciro D'Apice, Benedetto Piccoli, Dirk Helbing, Sensitivity analysis of permeability parameters for flows on Barcelona networks, 2010, 249, 00220396, 3110, 10.1016/j.jde.2010.09.006
    8. M. L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin, A. M. Bayen, A PDE-ODE Model for a Junction with Ramp Buffer, 2014, 74, 0036-1399, 22, 10.1137/130908993
    9. Simone Göttlich, Michael Herty, Salissou Moutari, Jennifer Weissen, Second-Order Traffic Flow Models on Networks, 2021, 81, 0036-1399, 258, 10.1137/20M1339908
    10. Mauro Garavello, Paola Goatin, The Cauchy problem at a node with buffer, 2012, 32, 1553-5231, 1915, 10.3934/dcds.2012.32.1915
    11. Zhiyang Lin, S. C. Wong, Xiaoning Zhang, Peng Zhang, Higher-Order Traffic Flow Model Extended to Road Networks, 2023, 149, 2473-2907, 10.1061/JTEPBS.TEENG-7556
    12. CASCONE ANNUNZIATA, CIRO D'APICE, PICCOLI BENEDETTO, RARITÀ LUIGI, OPTIMIZATION OF TRAFFIC ON ROAD NETWORKS, 2007, 17, 0218-2025, 1587, 10.1142/S021820250700239X
    13. Benedetto Piccoli, Andrea Tosin, 2009, Chapter 576, 978-0-387-75888-6, 9727, 10.1007/978-0-387-30440-3_576
    14. S. Moutari, M. Rascle, A Hybrid Lagrangian Model Based on the Aw–Rascle Traffic Flow Model, 2007, 68, 0036-1399, 413, 10.1137/060678415
    15. Raluca Eftimie, 2018, Chapter 3, 978-3-030-02585-4, 55, 10.1007/978-3-030-02586-1_3
    16. Edwige Godlewski, Pierre-Arnaud Raviart, 2021, Chapter 7, 978-1-0716-1342-9, 627, 10.1007/978-1-0716-1344-3_7
    17. Georges Bastin, Jean-Michel Coron, Brigitte d'Andrea-Novel, 2008, Boundary feedback control and Lyapunov stability analysis for physical networks of 2×2 hyperbolic balance laws, 978-1-4244-3123-6, 1454, 10.1109/CDC.2008.4738857
    18. Alberto Bressan, 2018, Chapter 19, 978-3-319-91544-9, 237, 10.1007/978-3-319-91545-6_19
    19. Alberto Bressan, Fang Yu, Continuous Riemann solvers for traffic flow at a junction, 2015, 35, 1553-5231, 4149, 10.3934/dcds.2015.35.4149
    20. Alberto De Marchi, Matthias Gerdts, Traffic Flow on Single-Lane Road Networks: Multiscale Modelling and Simulation, 2018, 51, 24058963, 162, 10.1016/j.ifacol.2018.03.028
    21. M. Herty, S. Moutari, M. Rascle, 2008, Chapter 77, 978-3-540-75711-5, 755, 10.1007/978-3-540-75712-2_77
    22. Florian Siebel, Wolfram Mauser, Salissou Moutari, Michel Rascle, Balanced vehicular traffic at a bottleneck, 2009, 49, 08957177, 689, 10.1016/j.mcm.2008.01.006
    23. Mauro Garavello, Francesca Marcellini, The Riemann Problem at a Junction for a Phase Transition Traffic Model, 2017, 37, 1553-5231, 5191, 10.3934/dcds.2017225
    24. M. Garavello, P. Goatin, The Aw–Rascle traffic model with locally constrained flow, 2011, 378, 0022247X, 634, 10.1016/j.jmaa.2011.01.033
    25. Wen-Long Jin, A Riemann solver for a system of hyperbolic conservation laws at a general road junction, 2017, 98, 01912615, 21, 10.1016/j.trb.2016.12.007
    26. Oliver Kolb, Simone Göttlich, Paola Goatin, Capacity drop and traffic control for a second order traffic model, 2017, 12, 1556-181X, 663, 10.3934/nhm.2017027
    27. Mauro Garavello, The LWR traffic model at a junction with multibuffers, 2014, 7, 1937-1179, 463, 10.3934/dcdss.2014.7.463
    28. Alberto Bressan, Yucong Huang, Globally optimal departure rates for several groups of drivers, 2019, 1, 2640-3501, 583, 10.3934/mine.2019.3.583
    29. R. M. Colombo, G. Guerra, M. Herty, V. Schleper, Optimal Control in Networks of Pipes and Canals, 2009, 48, 0363-0129, 2032, 10.1137/080716372
    30. Dirk Helbing, Jan Siegmeier, Stefan Lämmer, 2013, Chapter 6, 978-3-642-32159-7, 335, 10.1007/978-3-642-32160-3_6
    31. Alberto Bressan, Khai T. Nguyen, Optima and equilibria for traffic flow on networks with backward propagating queues, 2015, 10, 1556-181X, 717, 10.3934/nhm.2015.10.717
    32. R. M. Colombo, M. Herty, V. Sachers, On 2×2 Conservation Laws at a Junction, 2008, 40, 0036-1410, 605, 10.1137/070690298
    33. CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042
    34. ARVIND KUMAR GUPTA, A SECTION APPROACH TO A TRAFFIC FLOW MODEL ON NETWORKS, 2013, 24, 0129-1831, 1350018, 10.1142/S0129183113500186
    35. Magali Mercier, Traffic flow modelling with junctions, 2009, 350, 0022247X, 369, 10.1016/j.jmaa.2008.09.040
    36. Celine Parzani, Christine Buisson, Second-Order Model and Capacity Drop at Merge, 2012, 2315, 0361-1981, 25, 10.3141/2315-03
    37. RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025
    38. Antonella Ferrara, Simona Sacone, Silvia Siri, 2018, Chapter 4, 978-3-319-75959-3, 85, 10.1007/978-3-319-75961-6_4
    39. Benedetto Piccoli, Andrea Tosin, 2013, Chapter 576-3, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_576-3
    40. Benedetto Piccoli, Andrea Tosin, 2012, Chapter 112, 978-1-4614-1805-4, 1748, 10.1007/978-1-4614-1806-1_112
    41. Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper, 2012, Chapter 7, 978-3-0348-0132-4, 123, 10.1007/978-3-0348-0133-1_7
    42. Michael Herty, Niklas Kolbe, Data‐driven models for traffic flow at junctions, 2024, 47, 0170-4214, 8946, 10.1002/mma.10053
    43. Paola Goatin, Alexandra Würth, The initial boundary value problem for second order traffic flow models with vacuum: Existence of entropy weak solutions, 2023, 233, 0362546X, 113295, 10.1016/j.na.2023.113295
    44. Wei Chen, Shumo Cui, Kailiang Wu, Tao Xiong, Bound-preserving OEDG schemes for Aw–Rascle–Zhang traffic models on networks, 2025, 520, 00219991, 113507, 10.1016/j.jcp.2024.113507
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4746) PDF downloads(104) Cited by(44)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog