Research article

Dynamics study of nonlinear discrete predator-prey system with Michaelis-Menten type harvesting

  • Received: 09 May 2023 Revised: 16 July 2023 Accepted: 07 August 2023 Published: 25 August 2023
  • In this paper, we study a discrete predator-prey system with Michaelis-Menten type harvesting. First, the equilibrium points number, local stability and boundedness of the system are discussed. Second, using the bifurcation theory and the center manifold theorem, the bifurcation conditions for the system to go through flip bifurcation and Neimark-Sacker bifurcation at the interior equilibrium point are obtained. A feedback control strategy is used to control chaos in the system, and an optimal harvesting strategy is introduced to obtain the optimal value of the harvesting coefficient. Finally, the numerical simulation not only shows the complex dynamic behavior, but also verifies the correctness of our theoretical analysis. In addition, the results show that the system causes nonlinear behaviors such as periodic orbits, invariant rings, chaotic attractors, and periodic windows by bifurcation.

    Citation: Xiaoling Han, Xiongxiong Du. Dynamics study of nonlinear discrete predator-prey system with Michaelis-Menten type harvesting[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16939-16961. doi: 10.3934/mbe.2023755

    Related Papers:

  • In this paper, we study a discrete predator-prey system with Michaelis-Menten type harvesting. First, the equilibrium points number, local stability and boundedness of the system are discussed. Second, using the bifurcation theory and the center manifold theorem, the bifurcation conditions for the system to go through flip bifurcation and Neimark-Sacker bifurcation at the interior equilibrium point are obtained. A feedback control strategy is used to control chaos in the system, and an optimal harvesting strategy is introduced to obtain the optimal value of the harvesting coefficient. Finally, the numerical simulation not only shows the complex dynamic behavior, but also verifies the correctness of our theoretical analysis. In addition, the results show that the system causes nonlinear behaviors such as periodic orbits, invariant rings, chaotic attractors, and periodic windows by bifurcation.



    加载中


    [1] R. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459–467. http://doi.org/10.1038/261459a0 doi: 10.1038/261459a0
    [2] A. Hastings, T. Powell, Chaos in three-species food chain, Ecology, 72 (1991), 896–903. http://doi.org/10.2307/1940591 doi: 10.2307/1940591
    [3] A. Khan, K. Tanzeela, Neimark-Sacker bifurcation and hybrid control in a discrete-time Lotka-Volterra model, Math. Methods Appl. Sci., 43 (2020), 5887–5904.
    [4] A. Hastings, T. Powell, Chaotic dynamics of a discrete prey-predator model with Holling-Type II, Nonlinear Anal. Real World Appl., 10 (2019), 116–129. http://doi.org/10.1016/j.nonrwa.2007.08.029 doi: 10.1016/j.nonrwa.2007.08.029
    [5] E. Elabbasy, A. Elsadany, Y. Zhang, Bifurcation analysis and chaos in a discrete reduced Lorenz system, Appl. Math. Comput., 228 (2014), 184–194. http://doi.org/10.1016/j.amc.2013.11.088 doi: 10.1016/j.amc.2013.11.088
    [6] A. Hastings, T. Powell, Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee effect, Commun. Nonlinear Sci. Numer. Simul., 38 (2016), 288–302. http://doi.org/10.1016/j.cnsns.2016.02.038 doi: 10.1016/j.cnsns.2016.02.038
    [7] Q. Din, Complexity and chaos control in a discrete-time prey-predator model, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 113–134. http://doi.org/10.1016/j.cnsns.2017.01.025 doi: 10.1016/j.cnsns.2017.01.025
    [8] A. Hastings, T. Powell, The role of vigilance on a discrete-time predator-prey model, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 6723–6744. http://doi.org/10.3934/dcdsb.2022017 doi: 10.3934/dcdsb.2022017
    [9] X. Liu, D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solitons Fractals, 32 (2007), 80–94. http://doi.org/10.1016/j.chaos.2005.10.081 doi: 10.1016/j.chaos.2005.10.081
    [10] X. Han, C. Lei, Bifurcation and turing instability analysis for a space-and time-discrete predator-prey system with Smith growth function, Chaos Solitons Fractals, 166 (2023), 112920. http://doi.org/10.1016/j.chaos.2022.112910 doi: 10.1016/j.chaos.2022.112910
    [11] C. Lei, X. Han, W. Wang, Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor, Math. Biosci. Eng., 19 (2022), 6659–6679. http://doi.org/10.3934/mbe.2022313 doi: 10.3934/mbe.2022313
    [12] W. Gan, C. Tian, Q. Zhang, Z. Lin, Stability in a simple food chain system with Michaelis-Menten functional response and nonlocal delays, Abst. Appl. Anal., 10 (2013), 1401–1429. http://doi.org/10.1155/2013/936952 doi: 10.1155/2013/936952
    [13] C. Clark C, M. Mangel, Aggregation and fishery dynamics a theoretical study of schooling and the Purse Seine tuna fisheries, Fishery Bull., 77 (1979), 317–337.
    [14] K. Chakraborty, M. Chakraborty, T. Kar, Optimal control of harvest and bifurcation of a prey-predator model with stage structure, Appl. Math. Simul. Comput., 217 (2011), 8778–8792. http://doi.org/10.1016/j.amc.2011.03.139 doi: 10.1016/j.amc.2011.03.139
    [15] C. Liu, W. Tang, The dynamics and control of a harvested differential-algebraic predator-prey model, Int. J. Inf. Syst. Sci., 7 (2011), 103–113. http://doi.org/10.1109/CCDC.2011.5968249 doi: 10.1109/CCDC.2011.5968249
    [16] M. Bahri, Stability analysis and optimal harvesting policy of predator-prey model with stage structure for predator, Appl. Math. Sci., 8 (2014), 7923–7934. http://doi.org/10.12988/ams.2014.410792 doi: 10.12988/ams.2014.410792
    [17] P. Chakraborty, U. Ghosh, S. Sarkar, Stability and bifurcation analysis of a discrete prey-predator model with square-root functional response and optimal harvesting, Biol. Syst., 28 (2020), 1–20. http://doi.org/10.1142/S0218339020500047 doi: 10.1142/S0218339020500047
    [18] L. Yuan, Q. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system, Biol. Syst., 39 (2015), 2345–2362. http://doi.org/10.1016/j.apm.2014.10.040 doi: 10.1016/j.apm.2014.10.040
    [19] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, Math. Biol., 73 (2016), 1179–1204. http://doi.org/10.1142/S0218339020500047 doi: 10.1142/S0218339020500047
    [20] X. X. Du, X. L. Han, C. Y. Lei, Behavior analysis of a class of discrete-time dynamical system with capture rate, Mathematics, 10 (2022), 2410. http://dx.doi.org/10.3390/math10142410 doi: 10.3390/math10142410
    [21] S. Lenhart, J. Workman, Optimal Control Applied to Biological Models. Mathematical and Computational Biology, 1st edn. Chapman Hall/CRC, London 2007.
    [22] S. Elaydi, Discrete Chaos: With Applications in Science and Engineering, Chapman and hall/CRC, 2007.
    [23] S. Elaydi, Dynamical Systems with Applications Using Mathematica, 1st Edition, Birkhauser, Boston, 2007. http://dx.doi.org/10.1007/978-0-8176-4586-1
    [24] S. Elaydi, An Introduction to Difference Equations, 3rd Edition, Springer-Verlag, New York, 2005.
    [25] G. Chen, X. Dong, From Chaos to Order: Perspectives, Methodologies, and Applications, World Scientific, Singapore, 1998.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1133) PDF downloads(142) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog