Research article Special Issues

Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model


  • Received: 29 December 2022 Revised: 20 February 2023 Accepted: 24 February 2023 Published: 22 March 2023
  • In the present study, the effects of the strong Allee effect on the dynamics of the modified Leslie-Gower predator-prey model, in the presence of nonlinear prey-harvesting, have been investigated. In our findings, it is seen that the behaviors of the described mathematical model are positive and bounded for all future times. The conditions for the local stability and existence for various distinct equilibrium points have been determined. The present research concludes that system dynamics are vulnerable to initial conditions. In addition, the presence of several types of bifurcations (e.g., saddle-node bifurcation, Hopf bifurcation, Bogdanov-Takens bifurcation, homoclinic bifurcation) has been investigated. The first Lyapunov coefficient has been evaluated to study the stability of the limit cycle that results from Hopf bifurcation. The presence of a homoclinic loop has been demonstrated by numerical simulation. Finally, possible phase drawings and parametric figures have been depicted to validate the outcomes.

    Citation: Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani. Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644. doi: 10.3934/mbe.2023422

    Related Papers:

  • In the present study, the effects of the strong Allee effect on the dynamics of the modified Leslie-Gower predator-prey model, in the presence of nonlinear prey-harvesting, have been investigated. In our findings, it is seen that the behaviors of the described mathematical model are positive and bounded for all future times. The conditions for the local stability and existence for various distinct equilibrium points have been determined. The present research concludes that system dynamics are vulnerable to initial conditions. In addition, the presence of several types of bifurcations (e.g., saddle-node bifurcation, Hopf bifurcation, Bogdanov-Takens bifurcation, homoclinic bifurcation) has been investigated. The first Lyapunov coefficient has been evaluated to study the stability of the limit cycle that results from Hopf bifurcation. The presence of a homoclinic loop has been demonstrated by numerical simulation. Finally, possible phase drawings and parametric figures have been depicted to validate the outcomes.



    加载中


    [1] A. J. Lotka, Elements of physical biology, Williams and Wilkins, Baltimore MD, 1925.
    [2] V. Volterra, Fluctuations in the abundance of species considered Mathematically, Nature, 118 (1926), 558–560. http://dx.doi.org/10.1038/118558a0 doi: 10.1038/118558a0
    [3] C. S. Holling, Some characteristics of simple types of predation and parasitism, Canadian Entom., 91 (1959), 385–398. https://doi.org/10.4039/Ent91385-7 doi: 10.4039/Ent91385-7
    [4] P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.1093/biomet/45.3-4.316 doi: 10.1093/biomet/45.3-4.316
    [5] S. B. Hsu, T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763–783. https://doi.org/10.1137/S00361399932532 doi: 10.1137/S00361399932532
    [6] M. A. Aziz-Alaoui, M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Appl. Math. Lett., 16 (2003), 1069–1075. https://doi.org/10.1016/S0893-9659(03)90096-6 doi: 10.1016/S0893-9659(03)90096-6
    [7] C. W. Clark, A delayed-recruitment model of population dynamics, with an application to baleen whale populations, J. Math. Biol., 3 (1976), 381–391. https://doi.org/10.1007/BF00275067 doi: 10.1007/BF00275067
    [8] R. P. Gupta, P. Chandra, Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting., J. Math. Anal. Appl., 398 (2013), 278–295. https://doi.org/10.1016/j.jmaa.2012.08.057 doi: 10.1016/j.jmaa.2012.08.057
    [9] M. K. Singh, B. S. Bhadauria, B. K. Singh, Qualitative analysis of a Leslie-Gower predator-prey system with nonlinear harvesting in predator, Int. J. Eng. Math., 2741891 (2016). https://doi.org/10.1155/2016/2741891 doi: 10.1155/2016/2741891
    [10] M. Li, B. Chen, H. Ye, A bioeconomic differential algebraic predator–prey model with nonlinear prey harvesting, Appl. Math. Model., 42 (2017), 17–28. https://doi.org/10.1016/j.apm.2016.09.029 doi: 10.1016/j.apm.2016.09.029
    [11] D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. Real World Appl., 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010
    [12] M. K. Singh, B. S. Bhadauria, The impact of nonlinear harvesting on a ratio-dependent Holling-Tanner predator-prey system and optimum harvesting, Appl. Appl. Math., 15 (2020), 117–148. https://digitalcommons.pvamu.edu/aam/vol15/iss1/8
    [13] W. Abid, R. Yafia, M. A. Aziz-Alaoui, A. Aghriche, Dynamics analysis and optimality in selective harvesting predator-prey model with modified leslie-gower and Holling-Type Ⅱ, Nonauton. Dyn. Syst., 6 (2019), 1–17. https://doi.org/10.1515/msds-2019-0001 doi: 10.1515/msds-2019-0001
    [14] S. Al-Momen, R. K. Naji, The dynamics of modified leslie-gower predator-prey model under the influence of nonlinear harvesting and fear effect, Iraqi J. Sci., 63 (2022), 259–282. https://doi.org/10.24996/ijs.2022.63.1.27 doi: 10.24996/ijs.2022.63.1.27
    [15] W. C. Allee, Co-operation among animals, Am. J. Sociol., 37 (1931), 386–398. https://www.jstor.org/stable/2766608
    [16] M. Begon, M. Mortimer, Population ecology: an unified study of animals and plants, 2$^{nd}$ edition Sinauer, Sunderland, Massachusetts, USA, 1986.
    [17] P. A. Stephens, W. J. Sutherland, R. P. Freckleton, What is the Allee effect, Oikos, 87 (1999), 185–190. https://doi.org/10.2307/3547011 doi: 10.2307/3547011
    [18] J. Zu, Global qualitative analysis of a predator–prey system with Allee effect on the prey species, Math. Comput. Simul., 94 (2013), 33–54. https://doi.org/10.1016/j.matcom.2013.05.009 doi: 10.1016/j.matcom.2013.05.009
    [19] Z. AlSharawi, S. Pal, N. Pal, J. Chattopadhyay, A discrete-time model with non-monotonic functional response and strong Allee effect in prey, J. Difference Equ. Appl., 26 (2020), 404–431. https://doi.org/10.1080/10236198.2020.1739276 doi: 10.1080/10236198.2020.1739276
    [20] F. Courchamp, L. Berec, J. Gascoigne, Allee effects in ecology and conservation, Oxford University Press, Oxford, 2008. https://doi.org/10.1093/acprof: oso/9780198570301.001.0001
    [21] B. Dennis, Population growth, critical density, and the chance of extinction, Nat. Res. Model, 3 (1989), 481–538. https://doi.org/10.1111/j.1939-7445.1989.tb00119.x doi: 10.1111/j.1939-7445.1989.tb00119.x
    [22] M. Sen, M. Banerjee, A. Morozov, Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect, Ecol. Complex., 11 (2012), 12–27. https://doi.org/10.1016/j.ecocom.2012.01.002 doi: 10.1016/j.ecocom.2012.01.002
    [23] J. Wang, J. Shi, J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62 (2011), 291–331. https://doi.org/10.1007/s00285-010-0332-1 doi: 10.1007/s00285-010-0332-1
    [24] M. K. Singh, B. S. Bhadauria, B. K. Singh, Bifurcation analysis of modified Leslie-Gower predator-prey model with double Allee effect, Ain Shams Eng. J., 9 (2018), 1263–1277. https://doi.org/10.1016/j.asej.2016.07.007 doi: 10.1016/j.asej.2016.07.007
    [25] P. Feng, Y. Kang, Dynamics of a modified Leslie-Gower model with double Allee effects, Nonlinear Dyn., 80 (2015), 1051–1062. https://doi.org/10.1007/s11071-015-1927-2 doi: 10.1007/s11071-015-1927-2
    [26] E. González-Olivares, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma, J. D. Flores, Consequences of double Allee effect on the number of limit cycles in a predator–prey model, Comput. Math. Appl., 62 (2011), 3449–3463. https://doi.org/10.1016/j.camwa.2011.08.061 doi: 10.1016/j.camwa.2011.08.061
    [27] C. Arancibia-Ibarra, J. D. Flores, G. Pettet, P. Van Heijster, A Holling-Tanner predator-prey model with strong Allee effect, Int. J. Bifurc. Chaos, 29 (2019), 1930032. https://doi.org/10.1142/S0218127419300325 doi: 10.1142/S0218127419300325
    [28] Z. Zhu, Y. Chen, Z. Li, F. Chen, Stability and bifurcation in a leslie–gower predator–prey model with Allee effect, Int. J. Bifurc. Chaos, 32 (2022), 2250040. https://doi.org/10.1142/S0218127422500407 doi: 10.1142/S0218127422500407
    [29] L. Perko, Differential Equations and Dynamical Systems, 3$^{nd}$ edition, Springer-Verlag, New York, 2001.
    [30] Y. A. Kuznetsov, Elements of applied bifurcation theory, Springer Science and Business Media, New York, 2004.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1353) PDF downloads(197) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog