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Abstract: In the present study, the effects of the strong Allee effect on the dynamics of the
modified Leslie-Gower predator-prey model, in the presence of nonlinear prey-harvesting, have been
investigated. In our findings, it is seen that the behaviors of the described mathematical model
are positive and bounded for all future times. The conditions for the local stability and existence
for various distinct equilibrium points have been determined. The present research concludes
that system dynamics are vulnerable to initial conditions. In addition, the presence of several
types of bifurcations (e.g., saddle-node bifurcation, Hopf bifurcation, Bogdanov-Takens bifurcation,
homoclinic bifurcation) has been investigated. The first Lyapunov coefficient has been evaluated to
study the stability of the limit cycle that results from Hopf bifurcation. The presence of a homoclinic
loop has been demonstrated by numerical simulation. Finally, possible phase drawings and parametric
figures have been depicted to validate the outcomes.
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1. Introduction

The future of human civilization depends on sustainable natural resources such as forestry,
wildlife, marine life, and many more, as they not only provide food, energy, medicines, and other
necessities for the human population but also help to regulate the Earth’s biodiversity. The increasing
food demand has led to an increase in the exploitation of these resources, which is exerting a negative
impact on the environment. As a result, it is critical to devise harvesting tactics that maximize
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economic rewards while simultaneously considering the ecological-health of the related
ecological-system. Predator-prey interactions, which are ubiquitous in nature, have a wide-ranging
impact on our biological-system. Lotka [1] and Volterra [2] devised separately the first mathematical
model to examine predator-prey interactions, and later it was referred to as the Lotka-Volterra
predator-prey model. In the conceptualization of this model, all the components, like growth rate,
predator’s mortality rate and altering the rate of prey biomass into predator reproduction, are assumed
to be linear functions [3], but predator-prey interactions depend on nonlinear components in nature.
As a consequence, the model fails to account for specific real-world scenarios, so a number of
improvements have been suggested by researchers. Leslie and Gower devised the Leslie-Gower
predator-prey (LGPP) model [4], where the growth function of predator species is distinct from the
predation function of predator species. In [5], the authors have investigated this model and found that
for all ecologically acceptable parameters, there exists a unique, globally asymptotically stable,
co-existing equilibrium point. Aziz-Alaoui and Okiye [6] enhanced the realism of this model, and
later it was termed the modified Leslie-Gower prey-predator (MLGPP) model.

Multiple biological resources are being overused because of the increasing demand for food and
other supplies. However, protecting the environment as a whole is a topic of concern on a worldwide
scale. In light of these two opposing realities, it is necessary for the commercial use of renewable
biological resources, such as fisheries and forestry, to be managed scientifically and to search for a
sustainable development strategy. In 1976, Clark [7] made the first attempt to develop a mathematical
model to examine the challenges and strategies of harvesting renewable natural resources. In
mathematical ecology, harvesting is classified into three forms: constant harvesting, linear harvesting
and nonlinear harvesting; see [8, 9]. The nonlinear harvesting is one of the most feasible
options [9, 10]. Hu and Cao [11] examined a predator-prey system in which non-linear harvesting
regulates the proliferation of predator species. They obtained certain parametric conditions for the
existence of several bifurcations: namely, Hopf bifurcation, transcritical bifurcation, saddle-node
bifurcation and Bogdanov-Takens bifurcation. The qualitative behavior of a ratio-dependent
Holling-Tanner predator-prey system with prey harvesting of nonlinear type was examined by Singh
and Bhadauria [12], where the system’s behavior in the neighborhood of its origin was studied and
found to be non-hyperbolic. Abid et al. [13] examined the dynamics of a harvested MLGPP model.
Al-Momen and Naji [14] investigated the impact of the fear effect on the dynamics of a harvested
MLGPP model.

W. C. Allee [15] suggested an inspiring biological phenomenon termed the Allee effect
(mechanism that results in a positive association between an aspect of the individual’s fitness and the
density/quantity of conspecifics) or negative competition effect [16]. It is a widespread phenomenon
in many animals that can be caused by a variety of reasons [17]. One of the key reasons is that it is
difficult to find partners within the same species in the case of low population density. The Allee
effect enhances the likelihood of local/global extinction of a predator-prey system [18]. In recent
decades, many mathematicians/ecologists have employed the Allee effect to improve the realism of
mathematical models. AlSharawi et al. [19] provided experimental evidence of the Allee effect in a
range of natural species. Based on how much the per capita growth rate is slowed down for the low
population densities, the Allee effect is classified in two classes: strong Allee effect (in case the per
capita growth rate is negative at the limit of low density) and weak Allee effect (in case the per capita
growth rate is positive at zero density) [20, 21]. In the literature, a lot of research demonstrated that
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the Allee effect makes a predator-prey system more dynamic and fascinating, providing new insights
into the connections between the two species [22, 23]. When the proliferation of prey species is
subjected to the double Allee effect, Singh et al. [24] examined how this affects the stability and
bifurcations of the MLGPP model. Feng and Kang [25] reported a comprehensive qualitative study of
the MLGPP model that assumes the Allee effect influences the proliferation of both species. In [26], a
comprehensive study of a modified Volterra predator-prey model in which the prey population is
growing under the influence of the double Allee effect has been provided. One of the most interesting
results they found was that the Allee effect can change the number of limit cycles. A Holling-Tanner
predator-prey system was investigated by Arancibia-Ibarra et al. [27], where prey species experience
a strong Allee effect. Recently, Zhu et al. [28] improved the MLGPP model by incorporating the
Allee effect and analyzed its qualitative behaviors.

In the present study, the MLGPP model is made more realistic by incorporating nonlinear prey
harvesting and a strong Allee-effect within the prey species. The remaining part of the paper is laid
out as shown below. The described model is developed in Section 2. Additionally, the solutions to the
model are analyzed for their positivity as well as their boundedness. Section 3 deals with the
emergence of system equilibrium points and their local stability. In Section 4, two local bifurcations
(saddle node and Hopf bifurcations), the nature of Hopf-bifurcating periodic solutions and a global
bifurcations (Bogdanov-Takens bifurcation) are examined. The analytical findings are verified
numerically in Section 5. In Section 6, the combined impact of nonlinear harvesting and the Allee
effect on the dynamics of the MLGPP system is reported. Finally, the results obtained with biological
conclusions are discussed in Section 7.

2. Model formulation and basic properties

2.1. Model formulation

Gupta and Chandra [8] proposed the following continuous-time two species MLGPP model, where
prey growth is governed by nonlinear harvesting:{ du

dt = ru(1 − u
K ) − a1uv

n+u −
qEu

m1E+m2u ,
dv
dt = sv(1 − a2v

n+u ),
(2.1)

where, at time t, u = u(t) and v = v(t) denote the densities of prey and predator, respectively. All
parameter values (r, s, a1, sa2, n,K, E and q) are positive and have the following ecological meanings:
r and s are the maximum specific growth rates of prey and predator, a1 is the encounter rate of predators,
n is the degree to which the ecosystem protects prey and predator, K is the carrying capacity for the
prey species, sa2 is the maximum value of the per capita decreasing rate of the predator, E represents
harvesting effort, and q represents the catchability coefficient. Further, m1 and m2 are suitable constants.
Here, the authors assumed that the degree of the environment’s protection is equal for both species.
Consider that the growth of the first species of system (2.1) is subjected to a strong Allee effect. This
consideration leads to the following form:{ du

dt = ru(1 − u
K )(u − M) − a1uv

n+u −
qEu

m1E+m2u ,
dv
dt = sv(1 − a2v

n+u ),
(2.2)
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where (u−M) stands for Allee effect, and −K ≤ M < K is its threshold value. This variable determines
how much the Allee effect affects the system. Since the strong Allee effect is of interest in this study,
so we have 0 < M ≤ K. Consider the following transformations to make the analysis easier.

x =
u
K
, y =

a2v
K
, τ = rt.

The system (2.2) transforms into the following non-dimensionalized system: dx
dτ = xK

(
(1 − x)(x − m) − βy

a+x −
h

c+x

)
,

dy
dτ = γy(1 − y

a+x ),
(2.3)

where a = n
K , m = M

K , β =
a1

a2rK , h = qE
rm2K2 , γ =

s
r , c = m1E

m2K .
Consider dt = Kdτ and γ = Kρ to eliminate the parameter K from the system (2.3), and we get dx

dt =
(
(x − m)(1 − x) − βy

a+x −
h

c+x

)
x,

dy
dt = (1 − y

a+x )ρy.
(2.4)

2.2. Positivity/Boundedness

Some results are provided to confirm that the proposed system is well posed.

Lemma 2.1. (a) Let (x(t), y(t)) be a solution behavior of model (2.4) with initial conditions (I-Cs)
x(0) > 0, y(0) > 0. Then, x(t) > 0, y(t) > 0, ∀t ≥ 0.

(b) Each solution of the model Eq (2.4) with the I-Cs starting in the positive quadrant is bounded for
every t ≥ 0.

Proof. (a) The prey and predator behavior for the model Eq (2.4) can be evaluated as follows:

x(t)/x(0) = exp
(∫ t

0

(
(1 − x(z))(x(z) − m) −

βy(z)
a + x(z)

−
h

c + x(z)

)
dz

)
, (2.5)

and

y(t)/y(0) = exp
[∫ t

0
ρ

(
1 −

y(z)
a + x(z)

)
dz

]
. (2.6)

From (2.5) one can see that for all t ≥ 0 the solution x(t) will be non-negative whenever I-C x(0)
is non-negative. The similar finding for predator species, y(t), holds true from (2.6), so the set R2

+

={(x, y) : x, y ≥ 0} is an invariant set.
(b) Suppose (x(t), y(t)) is a non-negative solution behavior of the model Eq (2.4), among them the

behavior of prey species is as follows:

x(t) = x(0) exp
[∫ t

0

(
(1 − x(z))(x(z) − m) −

βy(z)
a + x(z)

−
h

c + x(z)

)
dz

]
. (2.7)

For the sake of convenience, take F
(
x(z), y(z)

)
=

(
(1 − x(z))(x(z) − m) − βy(z)

a+x(z) −
h

c+x(z)

)
.

Now, we have the two cases that are explained below:
Case (i) When x(0) ≤ 1. Our goal is to show x(t) ≤ 1, ∀ t ≥ 1.
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Suppose that our claim is not correct. In this case, two positive reals, say, t1 and t2, exist (t2 > t1)
with the property that x(t1) = 1, x(t) > 1, ∀t ∈ (t1, t2). This yields

x(t) = x(0).e
∫ t

0 F(x(z), y(z))dz, ∀t ∈ (t1, t2), (2.8)

Equation (2.8) leads to

x(t) = x(0).e
∫ t1

0 F(x(z), y(z))dz.e
∫ t

t1
F(x(z), y(z))dz

< x(t1).

As F
(
x(t), y(t)

)
< 0, ∀t ∈ (t1, t2), we have a contradiction, and our claim is accepted.

Case (ii) When x(0) > 1. Clearly, F
(
x(t), y(t)

)
< 0 whenever x(t) ≥ 1, so, as long as x(t) ≥ 1,

x(t) = x(0).e
∫ t

0 F(x(z), y(z))dz < x(0).

From cases (i) and (ii), we get

x(t) ≤ max{1, x(0)} = N2, ∀t ≥ 0. (2.9)

Inequality (2.9) with the predator equation in (2.4) leads to

dy
dt
≤ ρy

(
1 −

y
a + N2

)
. (2.10)

The inequality (2.10) implies

y(t) ≤ max{y(0), a + N2},∀t ≥ 0.

Hence the result.
□

3. Equilibria and the conditions for their stability

3.1. Equilibria and their existence

This portion deals with the number of feasible equilibria admitted by model (2.4). The nullclines of
model (2.4) are given by

x
(
(x − m)(1 − x) − βy

a+x −
h

c+x

)
= 0, y(1 − y

a+x ) = 0. (3.1)

Thus, the model (2.4) always admits the trivial equilibrium point E0 = (0, 0) and the prey free
equilibrium point E5 = (0, a). In addition to the above, two types of equilibrium points are evaluated
as follows:

(i) Predator Free Equilibrium Points: Ei = (xi, 0), where xi can be evaluated by the cubic equation

x3 − T (c,m)x2 − L(c,m)x + mc + h = 0, (3.2)
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where T (c,m) = 1 − c +m, and L(c,m) = c(1 +m) −m. Descartes’ sign rule assures that Eq (3.2)
always has a negative root if any of the conditions i) T > 0, L ≥ 0, ii) T > 0, L ≤ 0 and
iii) T ≤ 0, L > 0 holds true.
Let us assume this negative root to be x1 = −α, α > 0. To obtain the other two roots of the
Eq (3.2), we divide it by (x + α), and consequently, the following quadratic equation is obtained.

x2 − x
(
T (c,m) + α

)
+ α

(
T (c,m) + α

)
− L(c,m) = 0. (3.3)

(ii) Interior Equilibrium Points: E∗i = (x∗i , a + x∗i ), where x∗i is the root of the cubic equation

x∗3 − T (c,m)x∗2 − R(c,m, β)x∗ + (m + β)c + h = 0, (3.4)

where T (c,m) = 1− c+m, and R(c,m, β) = (1+m)c−m− β. Descartes’ sign rule assures that Eq (3.4)
always admits a negative root if any of the conditions i) T > 0,R ≥ 0, ii) T > 0,R ≤ 0 and iii)
T ≤ 0,R > 0 holds true. Let us assume the negative root to be x∗1 = −ξ, ξ > 0, and the remaining
two roots are obtained by finding the roots of the following quadratic equation, obtained by dividing
Eq (3.4) by x∗ + ξ:

x∗2 − x∗
(
ξ + T (c,m)

)
+ ξ

(
ξ + T (c,m)

)
− R(c,m, β) = 0. (3.5)

Take ∆1 =
(
α+T (c,m)

)2
−4

(
α
(
α+T (c,m)

)
−L(c,m)

)
, ∆2 =

(
ξ+T (c,m)

)2
−4

(
ξ
(
ξ+T (c,m)

)
−R(c,m, β)

)
,

α∗ =
−T (c,m)+2

√
T 2(c,m)+3L(c,m)
3 , and ξ∗ = −T (c,m)+2

√
T 2(c,m)+3R(c,m,β)

3 , provided L(c,m) ≥ 0 and R(c,m, β) ≥
0.
As a summary of the preceding discussion, we get the following.

Lemma 3.1. If any of the conditions i) T > 0, L ≥ 0, ii) T > 0, L ≤ 0 and iii) T ≤ 0, L > 0 holds
true, then the model Eq (2.4) has

(a) no predator-free point of equilibrium whenever α > α∗,
(b) a unique predator-free point equilibrium E2(x2, 0) whenever α = α∗, where x2 =

1−c+m+α
2 , and

(c) two distinct predator-free point equilibrium points E3(x3, 0) and E4(x4, 0) whenever 0 < α < α∗,
where x3 =

α+T (c,m)+
√
∆1

2 , and x4 =
α+T (c,m)−

√
∆1

2 .

Lemma 3.2. If any of the conditions i) T > 0,R ≥ 0, ii) T > 0,R ≤ 0 and iii) T ≤ 0,R > 0 holds
true, then the model (2.4) has

(a) no interior point of equilibrium whenever ξ > ξ∗,
(b) a unique interior equilibrium point E∗2(x∗2, a + x∗2) if ξ = ξ∗, where x∗2 =

1−c+m+α∗
2 ,

(c) two distinct interior equilibrium points E∗3(x∗3, a + x∗3) and E∗4(x∗4, a + x∗4) if 0 < ξ < ξ∗, where
x∗3 =

α∗+T (c,m)+
√
∆2

2 and x∗4 =
α∗+T (c,m)−

√
∆2

2 .

Using the conditions of Lemma 3.2, Figure 1 depicts the numbers of interior equilibrium points.
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Figure 1. If c = 0.5, h = 0.10, β = 0.07995, ρ = 0.5, a = 0.10, then the model (2.4) (a) has
no interior point of equilibrium whenever m = 0.192, (b) has a unique interior equilibrium
point whenever m = 0.174772, (c) has two interior equilibrium points whenever m = 0.14.

3.2. Local stability analysis

This portion deals with the linearization approach to examine local stability of equilibria for
model (2.4).

Theorem 3.1. Always, the trivial point E0 is a saddle.

Proof. The Jacobian matrix of model (2.4) at E0(0, 0) is

JE0 =

[
−1

c (mc + h) 0
0 ρ

]
,

whose eigenvalues are λ1 = −
1
c (mc + h) < 0 and λ2 = ρ > 0. We get the result from the fact that these

eigenvalues are of opposite signs. □

Theorem 3.2. Always, the point E3 is a saddle, whereas E4 is unstable.

Proof. The Jacobian matrix for model (2.4) at an axial feasible point E(x, 0) of equilibrium is given by

JE(x,0) =

[
(1 − 2 x + m + h

(c + x)2 )x −β x
(a + x)

0 ρ

]
,

whose eigenvalues are λ1 = x
(
1 − 2x + m + h

(c+x)2

)
and λ2 = ρ.

Interpreting x
(
1 − 2x + m + h

(c+x)2

)
at x3 =

1−c+m+α+
√
∆1

2 , the eigenvalue λ1 = −
x3
√
∆1

(c+x3)

(
α + x3

)
< 0. Since

the eigenvalues of the matrix JE(x3,0) are of opposite signs, the point E3 is always a saddle point.
Interpreting x

(
1 − 2x + m + h

(c+x)2

)
at x4 =

1−c+m+α−
√
∆1

2 , the eigenvalue λ1 =
x4
√
∆1

(c+x4)

(
α + x4

)
> 0. Since

the eigenvalues of the matrix JE(x3,0) are of positive signs, the point E4 is always an unstable point. □

Theorem 3.3. The equilibrium point E5 = (0, a) is always asymptotically stable.

Proof. The Jacobian matrix for model (2.4) at E5 = (0, a) is given by

JE5 =

[
−(m + β + h

c ) 0
ρ −ρ

]
,

and eigenvalues of this are λ1 = −(m + β + h
c ) < 0 and λ2 = −ρ < 0. Since both eigenvalues are of

negative sign, the point E5 is always stable. □
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Theorem 3.4. The point E∗4 is a saddle point always, while point E∗3 is

(i) unstable if x∗3
(
1 − 2x∗3 + m + β

a+x∗3
+ h

(c+x∗3)2

)
> ρ,

(ii) stable if x∗3
(
1 − 2x∗3 + m + β

a+x∗3
+ h

(c+x∗3)2

)
< ρ.

Proof. The Jacobian matrix for model (2.4) at E = (x, y) is

JE =

[
x(1 − 2x + m + β

a+x +
h

(c+x)2 ) −
βx

a+x

ρ −ρ

]
.

The determinant and trace of the above matrix are evaluated as
detJE = ρx

(
2x − (1 + m + h

(c+x)2 )
)
, and trJE = x(1 − 2x + m + β

(a+x) +
h

(c+x)2 ) − ρ.

Computing x
(
2x − (1 + m + h

(c+x)2 )
)

at x∗4 =
1−c+m+α∗−

√
∆2

2 yields

x∗4
(
2x∗4 − (1 + m + h

(c+x∗4)2 )
)
=

x∗4
√
∆2

2(c+x∗4)

(
− 1 − m + c − 3α∗ +

√
∆2

)
= −

x∗4
√
∆2

(c+x∗4)

(
α∗ + x∗4

)
,

which indicates that the determinant det JE∗4
is negative, so the point E∗4 is always a saddle point.

Now, interpreting x
(
2x − (1 + m + h

(c+x)2 )
)

at x∗3 =
1−c+m+α∗+

√
∆2

2 yields

x∗3
(
2x∗3 − (1 + m + h

(c+x∗3)2 )
)
=

x∗3
√
∆2

2(c+x∗3)

(
1 + m − c + 3α∗ +

√
∆2

)
=

x∗3
√
∆2

(c+x∗3)

(
α∗ + x∗3

)
,

which shows that the determinant detJE∗3
is positive, and the Routh-Hurwitz criterion confirms the

conclusion. □

Theorem 3.5. The equilibrium point E∗2 of the model Eq (2.4) is

(i) a stable saddle node whenever βx∗2
a+x∗2
< ρ and an unstable saddle node whenever βx∗2

a+x∗2
> ρ,

(ii) a cusp of codimension 2 whenever βx∗2
a+x∗2
= ρ and aβ

(a+x∗2)2 −
2x∗2

2

(c+x∗2) , 0.

Proof. (i) Use the transformation x̌ = x − x∗2, y̌ = y − y∗2 in the model (2.4) to shift the equilibrium
point E∗2 to the origin (0, 0), and the Taylor series expansion at (0, 0) reduces the corresponding
model equation to  dx̌

dt =
βx∗2

a+x∗2
x̌ − βx∗2

a+x∗2
y̌ + a20 x̌2 + a11 x̌y̌ + o|(x̌, y̌)3|,

dy̌
dt = ρx̌ − ρy̌ −

ρ

a+x∗2
x̌2 +

2ρ
a+x∗2

x̌y̌ − ρ

a+x∗2
y̌2 + o|x̌, y̌)3|,

(3.6)

where a20 =
aβ

(a+x∗2)2 −
x∗2

2

c+x∗2
, a11 = −

aβ
(a+x∗2)2 .

Evidently, if βx∗2
a+x∗2
, ρ, then the trace trJE∗2

, 0, but the determinant detJE∗2
= 0, which confirms

that the equilibrium point E∗2 is a saddle node. Additionally, trJE∗2
< 0 whenever βx∗2

a+x∗2
< ρ, so E∗2

is a stable saddle node. trJE∗2
> 0 whenever βx

∗
2

a+x∗2
> ρ, so the point E∗2 is an unstable saddle node.

(ii) Let us consider βx
∗
2

a+x∗2
= ρ, (3.6) can be expressed as dx̌

dt = ρ(x̌ − y̌) + a20 x̌2 + a11 x̌y̌ + o|(x̌, y̌)3|,
dy̌
dt = ρ(x̌ − y̌) − ρ

a+x∗2
x̌2 +

2ρ
a+x∗2

x̌y̌ − ρ

a+x∗2
y̌2 + o|(x̌, y̌)3|.

(3.7)
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Let us consider τ = ρt, the system (3.7) becomes dx̌
dτ = x̌ − y̌ + b20 x̌2 + b11 x̌y̌ + o|(x̌, y̌)3|,
dy̌
dτ = x̌ − y̌ − 1

a+x∗2
x̌2 + 2

a+x∗2
x̌y̌ − 1

a+x∗2
y̌2 + o|(x̌, y̌)3|,

(3.8)

where b20 =
a20
ρ
, b11 =

a11
ρ
.

The system (3.8) under the transformation x̃ = x̌, ỹ = x̌ − y̌ reduces to dx̃
dτ = ỹ + b20 x̃2 − b11 x̃ỹ + o|(x̃, ỹ)3|,
dỹ
dτ = b20 x̃2 − b11 x̃ỹ + 1

a+x∗2
ỹ2 + o|(x̃, ỹ)3|,

(3.9)

where b20 = b20 + b11. Further, under the transformation x1 = x̃, x2 = ỹ− 1
a+x∗2

x̃ỹ, the system (3.9)
reduces to { dx1

dτ = x2 + b20x2
1 + b11x1x2 + o|(x1, x2)3|,

dx2
dτ = b20x2

1 − b11x1x2 + o|(x1, x2)3|,
(3.10)

where b11 = ( 1
a+x∗2
− b11). Finally, with the transformation y1 = x1 −

1
2b11x2

1, y2 = x2 + b20x2
1 +

o|(x1, x2)3|, (3.10) reduces to{ dy1
dτ = y2,
dy2
dτ = b20y2

1 + (2b20 − b11)y1y2 + o|(y1, y2)3|.
(3.11)

As 2b20 − b11 =
1
ρ

(
aβ

(a+x∗2)2 −
2x∗2

2

(c+x∗2)

)
, 0, and b20 = −

x∗2
2

ρ(c+x∗2) , 0, E∗2 is a cusp of codimension 2 in
the xy plane.

□

4. Bifurcation analysis

This section deals with the existence of various types of bifurcations for the model (2.4): saddle
node bifurcation, Hopf bifurcations, Bogdanov-Takens bifurcation and homoclinic bifurcation.

4.1. Saddle-node bifurcation

It is proven in Lemma 3.2 that there is a unique degenerate positive equilibrium E∗2 = (x∗2, y
∗
2)

that develops as a result of the annihilation of the two internal equilibrium points E∗3 = (x∗3, y
∗
3) and

E∗4 = (x∗4, y
∗
4). Thus, there is a chance of occurrence of a saddle-node bifurcation at E∗2 = (x∗2, y

∗
2).

Satomayor’s criterion, which is described in the following theorem, is utilized to ensure the occurrence
of saddle-node bifurcation.

Theorem 4.1. The model (2.4) exhibits a saddle-node bifurcation in the vicinity of the point E∗2(x∗2, y
∗
2)

w.r.t. the parameter m whenever β(1−c+m+α∗)
(2a+1−c+m+α∗) , ρ.

Proof. The Jacobian matrix of the model (2.4) at E∗2, is

JE∗2
=

[ β(1−c+m+α∗)
(2a+1−c+m+α∗)

−β(1−c+m+α∗)
(2a+1−c+m+α∗)

ρ −ρ

]
.
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The determinant detJE∗2
= 0, and trace trJE∗2

=
β(1−c+m+α∗)

(2a+1−c+m+α∗) − ρ. So, we can conclude that whenever
β(1−c+m+α∗)

(2a+1−c+m+α∗) , ρ, one eigenvalue of JE∗2
is zero, and the other is non-zero. Let V and U represent

eigenvectors of matrices JE∗2
and JT

E∗2
, respectively, associated with zero-eigenvalue of the matrices. A

simple computation implies

V =
[

1
1

]
, U =

[
−ρ(2a+1−c+m+α∗)
β(1−c+m+α∗)

1

]
.

Consider,

g
(
x, y,m

)
=

(
(1 − x)(x − m) − βy

a+x −
h

c+x
a + x − y

)
. (4.1)

Now,

gm

(
E∗2,m

[sn]
)
=

[
−1−c+m+α∗

2
0

]
, D2g

(
E,m[sn]

)
(V,V) =

(
−2 − 16 h

(1+c+m+α∗)3

0

)
.

Thus,

UT .gm

(
E∗2,m

[sn]
)
=
ρ(1 + c − m − α∗)(2a + 1 − c + m + α∗)

β(1 − c + m + α∗)
, 0.

and
UT .D2g

(
E∗2,m

[sn]
)
(V,V) =

ρ(2a + 1 − c + m + α∗)
β(1 − c + m + α∗)

(
2 +

16h
1 + c + m + α∗

)
, 0.

The two preceding transversality conditions for saddle-node bifurcation indicate the occurrence of
saddle-node bifurcation for the model (2.4) at E∗2. □

Theorem 4.2. The model (2.4) exhibits a saddle-node bifurcation in the vicinity of the point E2(x2, 0)
w.r.t. the parameter m.

4.2. Hopf bifurcation

It is proven in Theorem 3.4 that the point E∗3 is unstable whenever x∗3
(
1−2x∗3+m+ β

a+x∗3
+ h

(c+x∗3)2

)
> ρ,

and it is stable whenever x∗3
(
1 − 2x∗3 + m + β

a+x∗3
+ h

(c+x∗3)2

)
< ρ. It is now fascinating to look into the

property of the point when x∗3
(
1 − 2x∗3 + m + β

(a+x∗3) +
h

(c+x∗3)2

)
− ρ = 0. For this parametric condition,

tr(JE∗3
) = 0, whereas det(JE∗3

) > 0, which leads to the appearance of the Hopf bifurcation at E∗3.

Theorem 4.3. The model (2.4) experiences a Hopf bifurcation around the point E∗3 w.r.t. the parameter
ρ in the presence of the parametric condition x∗3

(
1 − 2x∗3 + m + β

(a+x∗3) +
h

(c+x∗3)2

)
− ρ = 0.

Proof. For ρ = x∗3
(
1 − 2x∗3 +m + β

(a+x∗3) +
h

(c+x∗3)2

)
, we get detJE∗3

> 0, trJE∗3
= x∗3

(
1 − 2x∗3 +m + β

(a+x∗3) +

h
(c+x∗3)2

)
− ρ, and d

dρ

(
trJE∗3

)∣∣∣∣
ρ=ρ[h f ]

= −1.

This confirms that the transversality conditions of Hopf bifurcation hold true, and the model (2.4)
undergoes a Hopf bifurcation around E∗3 w.r.t. the parameter ρ. □

The above theorem ensures the existence of a limit cycle. Next, the first Lyapunov coefficient is
computed for model (2.4) at E∗3 to examine the stability of the limit cycle.
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Take x = x̄ − x∗3, y = ȳ − y∗3 to shift the equilibrium E∗3 to the origin (0, 0), and the model (2.4) reduces
to { dx̄

dt = a10 x̄ + a01ȳ + a20 x̄2 + a11 x̄ȳ + a02ȳ2 + a30 x̄3 + a21 x̄2ȳ + a12 x̄ȳ2 + a03ȳ3 + f1(x̄, ȳ),
dȳ
dt = b10 x̄ + b01ȳ + b20 x̄2 + b11 x̄ȳ + b02ȳ2 + b30 x̄3 + b21 x̄2ȳ + b12 x̄ȳ2 + b03ȳ3 + f2(x̄, ȳ),

(4.2)

where, a10 = x∗3 − 2x∗3
2 +mx∗3 +

βx∗3y∗3
(a+x∗3)2 +

hx∗3
(c+x∗3)2 , a01 =

−βx∗3
(a+x∗3) , a20 = (1− x∗3)+ βy∗3

(a+x∗3)2 +
h

(c+x∗3)2 − (x∗3 −m)−

x∗3−
βx∗3y∗3

(a+x∗3)3 −
hx∗3

(c+x∗3)3 , a11 =
−βa

(a+x∗3)2 , a02 = 0, a30 =
βx∗3y∗3

(a+x∗3)4 +
hx∗3

(c+x∗3)4 −
h

(c+x∗3)3 −
βy∗3

(a+x∗3)3 −1, a21 =
βa

(a+x∗3)3 , a12 =

0, a03 = 0, b10 =
ρy∗3

2

(a+x∗3)2 , b01 =
−ρy∗3

(a+x∗3) , b20 =
−ρy∗3

2

(a+x∗3)3 , b11 =
2ρy∗3

(a+x∗3)2 , b02 =
−ρ

(a+x∗3) , b30 =
ρy∗3

2

(a+x∗3)4 , b21 =

−2ρy∗3
(a+x∗3)3 , b12 =

ρ

(a+x∗3)2 , b03 = 0, f1(x̄, ȳ) =
∑∞

i+ j=4 ai j x̄ȳ, f2(x̄, ȳ) =
∑∞

i+ j=4 bi j x̄ȳ.
As a result, the first Lyapunov number σ at the origin is evaluated as in Perko [29], as follows:
σ = −3π

2a01∆3/2 [a10b10(a11
2 + a11b02 + a02b11) + a10a01(b11

2 + a20b11 + a11b02) + b10
2(a11a02 + 2a02b02) −

2a10b10(b02
2
−a20a02)−2a10a01(a20

2−b20b02)−a01
2(2a20b20+b11b20)+(a01b10−2a10

2)(b11b02−a11a20)]−
(a10

2+a01b10)[3(b10b03−a01a30)+2a10(a21+b12)+(b10a12−a01b21)],where ∆ = ρx∗3
(
2x∗3−(1+m+ h

(c+x∗3)2 )
)
.

An unstable limit cycle appears around E∗3 whenever σ > 0; otherwise, a stable limit cycle appears
around E∗3.

4.3. Bogdanov-Taken bifurcation

The Jacobian matrix of model (2.4) at E∗2 = (x∗2, y
∗
2) is

JE∗2
=

 βx∗2
(a+x∗2) −

βx∗2
(a+x∗2)

ρ −ρ

 ,
det(JE∗2

) = 0, whereas the trace tr(JE∗2
) = 0, under the parametric condition βx∗2

(a+x∗2) = ρ. As a result of
this, the non-zero Jacobian matrix JE∗2

has a zero-eigenvalue of multiplicity two, which means that the
Bogdanov - Takens (BT) bifurcation may occur in the model (2.4). As the parameters m, ρ play vital
roles in the dynamics of the model equation, it is worthwhile to regard them as bifurcation parameters.
The BT point in the parameter space is associated with the point at which the saddle-node bifurcation
curve and Hopf-bifurcation curve cross. To ensure the appearance of the BT bifurcation, the non-
degeneracy criteria are shown by using the technique introduced in [30].

Theorem 4.4. Bogdanov-Takens bifurcation occurs in the model Eq (2.4) w.r.t. bifurcation parameters
m, ρ around the instantaneous point E∗2 whenever ρ = βx∗2

(a+x∗2) and
aρ

x∗2(a + x∗2)
−

2x∗2(α∗+x∗2)
(c+x∗2) , 0.

Proof. Suppose m, ρ vary in a small neighborhood of BT point (m∗, ρ∗) and let (m, ρ) = (m∗+λ1, ρ
∗+λ2)

be a neighboring point of the BT point, where λ1, λ2 are very small, and the model (2.4) reduces to dx
dt = x

(
(1 − x)(x − m∗) − βy

a+x −
h

c+x

)
− x(1 − x)λ1 = g1(x, y, λ1),

dy
dt = ρ

∗y(1 − y
a+x ) + λ2y(1 − y

a+x ) = g2(x, y, λ2).
(4.3)

Under u1 = x − x∗2, u2 = y − y∗2 the BT point is shifted to (0, 0). As a result, the system (4.3) reduces to du1
dt = g1(x∗2, y

∗
2, λ1) +

(
p + λ1(2x∗2 − 1)

)
u1 + qu2 +

a11
2 u2

1 + a12u1u2 +
a22
2 u2

2,
du2
dt = g2(x∗2, y

∗
2, λ2) +

(
r + λ2

)
u1 +

(
s − λ2

)
u2 +

b11
2 u2

1 + b12u1u2 +
b22
2 u2

2,
(4.4)
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where p, q, r and s are the Jacobian coefficients calculated at the equilibrium point E∗2, and the
coefficients ai j and bi j are determined by
a11 =

[
∂2g1
∂x2

]
(x∗2, y∗2, m∗, ρ∗)

= 2
(

aβ
(a+x∗2)2 − x∗2 −

hx∗2
(c+x∗2)3

)
+ 2λ1,

a12 =
[
∂2g1
∂x∂y

]
(x∗2, y∗2, m∗, ρ∗)

= −
aβ

(a+x∗2)2 ,

a22 =
[
∂2g1
∂y2

]
(x∗2, y∗2, m∗, ρ∗)

= 0,

b11 =
[
∂2g2
∂x2

]
(x∗2, y∗2, m∗, ρ∗)

=
−2ρ

(a+x∗2) −
2λ2

(a+x∗2) ,

b12 =
[
∂2g2
∂x∂y

]
(x∗2, y∗2, m∗, ρ∗)

=
2ρ

(a+x∗2) +
2λ2

(a+x∗2) ,

b22 =
[
∂2g2
∂y2

]
(x∗2, y∗2, m∗, ρ∗)

=
−2ρ

(a+x∗2) −
2λ2

(a+x∗2) .

Making the affine transformations v1 = u1 and v2 = pu1 + qu2, the system (4.4) reduces to{ dv1
dt = ξ00(λ) + ξ10(λ)v1 + ξ01(λ)v2 +

1
2ξ20(λ)v2

1 + ξ11(λ)v1v2 +
1
2ξ02(λ)v2

2 + p1(v1, v2),
dv2
dt = η00(λ) + η10(λ)v1 + η01(λ)v2 +

1
2η20(λ)v2

1 + η11(λ)v1v2 +
1
2η02(λ)v2

2 + p2(v1, v2),
(4.5)

where,
ξ00(λ) = g1(x∗2, y

∗
2, λ1), ξ10(λ) = λ1(2x∗2 − 1), ξ01(λ) = 1, ξ20(λ) = a11 −

2p
q a12 +

p2

q2 a22,

ξ11(λ) = a12
q −

p
q2 a22, ξ02(λ) = a22

q2 , η00(λ) = pg1(x∗2, y
∗
2, λ1) + qg2(x∗2, y

∗
2, λ2),

η10(λ) = pλ1(2x∗2 − 1), η01(λ) = −λ2,

η20(λ) =
(
pa11 + qb11 −

2p
q (pa12 + qb12) + p2

q2 (pa22 + qb22)
)
,

η11(λ) =
(

pa12+qb12
q −

p
q2 (pa22 + qb22)

)
, η02(λ) = (pa22+qb22)

q2 .

In order to ensure the existence of Bogodanov-Takens bifurcation, we examine the following non-
degeneracy conditions [30]:

i)
[

p q
r s

]
= θ2×2,

ii) ξ20(0) + η11(0) , 0,
iii) η20(0) , 0.

The first restriction is obvious. Using the values of ai j, bi j, p and q, we get

ξ20(0) + η11(0) =
aρ

x∗2(a + x∗2)
−

2x∗2(α∗+x∗2)
(c+x∗2) .

η20 = −
2ρx∗2(α∗+x∗2)

a+x∗2
, 0.

Hence, the proof is complete. □

5. Numerical simulations

This section deals with the numerical simulations to validate the presented analytical findings. For
computations and plotting phase portrait diagrams, we utilized the MATHEMATICA 10.0 software.

1)  dx
dt = x

(
(1 − x)(x − 0.17) − 0.07995y

0.10+x −
0.10

0.5+x

)
,

dy
dt = ρy(1 − y

0.10+x ).
(5.1)
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From an ecological point of view, ρ < 1. The model (5.1) exhibits six feasible equilibrium points:
E0 = (0, 0), E3 = (0.902701, 0) E4 = (0.351066, 0), E5 = (0, 0.1), E∗3 = (0.665439, 0.765439)
and E∗4 = (0.583736, 0.683736). The natures of the equilibrium points are shown in Table 1.

Table 1. Natures of equilibrium points.

Equilibrium Value of ρ Nature Figure(s)

E0 0 < ρ < 1 Saddle 2
E3 0 < ρ < 1 Saddle 2
E4 0 < ρ < 1 unstable 2
E5 0 < ρ < 1 stable 2

0 < ρ < 0.0114431 unstable 2 a
ρ = 0.0114431 unstable limit cycle encloses

it (σ = 936.161π > 0) 2 b
E∗3 0.0114431 < ρ < 0.018011 stable 2 c

ρ = 0.018011 stable and enclosed by
unstable homoclinic loop 2 d

ρ > 0.018011 stable but homoclinic loop
will disappear 2 e

E∗4 0 < ρ < 1 Saddle 2

(a) (b) (c)

E0

E5

E3E4

E4
*

E3
*
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0.0
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0.4
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0.8
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*

E3
*

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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0.4

0.6

0.8

1.0

x

y

(d) (e)

E0
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E4 E3

E4
*

E3
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0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

x
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E4

E3
*

E4
*

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

x

y

Figure 2. (a) ρ = 0.01. E∗3 = (0.665439, 0.765439) is an unstable point. (b) ρ = ρ[h f ] =

0.0114431. Unstable limit cycles arise around E∗3(0.665439, 0.765439). (c) ρ = 0.014.
E∗3 = (0.665439, 0.765439) is a stable point and enclosed by an unstable limit cycle. (d)
ρ = 0.018011. The limit cycle collides with the saddle point E∗4 = (0.583736, 0.683736),
and a homoclinic loop arises around E∗3(0.665439, 0.765439). (e) ρ = 0.02. E∗3 =
(0.665439, 0.765439) is a stable point.
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2)  dx
dt = x

(
(1 − x)(x − 0.174772) − 0.07995y

0.10+x −
0.10

0.5+x

)
,

dy
dt = ρy(1 − y

0.10+x ).
(5.2)

There are four axial equilibrium points, E0 = (0, 0), E3 = (0.901899, 0), E4 = (0.356186, 0)
and E5(0, 0.1) in the model (5.2), along with a unique interior point E∗2(0.626768, 0.726768).
Quantitatively, the points of axial equilibria are identical with the axial equilibria of the model
(5.1). Unique interior equilibrium point E∗2 occurs due to collision of the interior points E∗3 and
E∗4 of model (5.1). The nature of E∗2 is reported in Table 2.

Table 2. Nature of equilibrium points.

Equilibrium Value of ρ Nature Figure

ρ <
βx∗2

a+x∗2
, Unstable Saddle node 3 b

E∗2 = (0.626768, 0.726768) ρ =
βx∗2

a+x∗2
Cusp 3 c

ρ >
βx∗2

a+x∗2
Stable Saddle node 3 d

(a) (b)

m = .174772

Predator

Prey
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Figure 3. (a) Diagram for saddle-node bifurcation. (b) ρ = 0.06. E∗2(0.626768, 0.726768) is
an unstable saddle node (c) ρ = 0.0689492. E∗2(0.626768, 0.726768) is a cusp of codimension
2. (d) ρ = 0.08. E∗2(0.626768, 0.726768) is a stable saddlenode.
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3)  dx
dt = x

(
(1 − x)(x − m) − 0.07995y

0.10+x −
0.10

0.5+x

)
,

dy
dt = 0.5y(1 − y

0.10+x ).
(5.3)

The model Eq (5.3) consists of only axial equilibrium points, and their number depends upon the
parameter m. Table 3 records the numbers of axial equilibrium points and their natures.

Table 3. Impact of m on the number and nature of axial equilibrium points of system (5.3).

Value of m Number of equilibria Name Nature Figure

0 < m < 0.430034 4 E0 = (0, 0) Saddle 4 (a)
E3 = (0.9, 0) Saddle
E4 = (0.4, 0) Unstable
E5 = (0, 0.1) Stable

m = 0.430034 3 E0 = (0, 0) Saddle 4 (c)
E2 = (0.75, 0) Unstable saddle node
E5 = (0, 0.1) Stable

0.430034 < m < 1 2 E0 = (0, 0) Saddle 4 (d)
E1 = (0, 0.1) Globally Stable

(a) (b)
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Figure 4. (a) Saddle-node bifurcation diagram. (b) m = 0.2. Phase portrait diagram. (c)
m = 0.430034. Point E2(0.750) is an unstable saddle node. (d) m = 0.5. E5 is a globally
stable point.
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4)  dx
dt = x

(
(1 − x)(x − m) − 0.0799y

0.08+x −
0.08

0.35+x

)
,

dy
dt = ρy(1 − y

0.08+x ).
(5.4)

The saddle-node bifurcation curve for the model (5.4) is m = 0.193603. The hopf-bifurcation
curve for the model Eq (5.4) is ρ = x∗3(1 − 2x∗3 + m + 0.0799

0.08+x∗3
+ 0.08

(0.35+x∗3)2 ). The intersection point
of these two curves (BT point) is (m∗, ρ∗) = (0.193603, 0.070995). These two curves divide the
feasible region into three distinct regions: Region I, Region II and Region III. The behaviors of
these regions are reported in Table 4 and depicted in Figure 5.

Table 4. Behaviors of the regions.

Region Nature of the equilibria

Region I Absence of interior points
Region II Two interior points (first is saddle, while the other is unstable)
Region III Two interior points (first is saddle, while the other is stable)

(a) (b) (c)
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Figure 5. (a) Bifurcation diagram of the model (2.4) in mρ-space. (b) BT point (m∗, ρ∗) =
(0.193603, 0.070995). Unique interior equilibrium point is a cusp of codimension 2. (c)
(m, ρ) = (0.194, , 0.06). This point lies in the first region. There exist no interior equilibrium
points, but the axial equilibrium E5 is always globally stable. (d) (m, ρ) = (0.192, , 0.037).
This point lies in the second region. Two interior equilibrium points exist (first is saddle,
while the other is unstable). (e) (m, ρ) = (0.1911, 0.06). This point lies in the third region.
Two interior equilibrium points exist (the first is saddle while the other is asymptotically
stable).
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6. Combined influence of non-linear harvesting and Allee effect

This work deals with a MLGPP model with two important phenomena, the Allee effect and
nonlinear harvesting. These two phenomena have strong impacts on the dynamics of a predator-prey
system. Also, the phenomenon of the Allee effect is natural as it occurs frequently in species. It has
been found that at low population density, it may enhance the risk of extinction [21]. On the other
hand, the harvesting provides a scientific study of the exploitation of renewable resources. Thus, a
predator-prey model that includes the Allee effect and non-linear harvesting in prey species is more
realistic. To the best of the authors’ knowledge, this is the first effort to study any predator-prey model
experiencing both the Allee effect and non-linear prey harvesting.

The model (2.4) with no Allee effect undergoes a number of bifurcations, known as saddle-node
bifurcation, Hopf bifurcation, transcritical bifurcation and Bogdanov-Takens bifurcation [8].
Meanwhile, the considered model equation with Allee effect experiences all aforesaid bifurcations
except the transcritical one, but this model provides more general parametric conditions for
appearance of these bifurcations. The dynamics of the populations of the model (2.4) in the hm−
plane have been plotted in Figure 6, which provides the maximum harvesting rate for a threshold
value of Allee effect.

(a) (b)

D2 > 0

D1 > 0

D2 = 0

D1 = 0

Region I

Region II

Region III
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m

Figure 6. (a) In Region I, ∆1 > 0 and ∆2 > 0. There are two interior and four axial
equilibrium points. On the boundary of Region I and Region II, ∆2 = 0. There are one
interior and four axial equilibrium points. In Region II, ∆1 > 0 and ∆2 < 0. There are only
four axial equilibrium points. On the boundary of Region II and Region III, ∆1 = 0. There
are only three axial equilibrium points. In Region III, ∆1 < 0 and ∆2 < 0, and therefore there
are only two axial equilibrium points. (b) Dynamics of populations of the model (2.4). In
Region I, both the species coexist, while in Region II only the predator species exists.

7. Conclusions

In the present work, the dynamics of a harvested MLGPP model have been studied in the case of a
strong Allee effect. It has been assumed that the growth of the prey species is subjected to non-linear
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harvesting. The analysis was simplified by the study of the equivalent system (2.4). It has been found
that the model (2.4) has at most six equilibrium points, in which the trivial equilibrium point and a
predator-free equilibrium are always saddle points, whereas another predator-free equilibrium point
is unstable. The prey-free equilibrium point is always asymptotically stable. Ecologically speaking,
predator species are always active in the ecosystem. If two interior points of equilibrium exist, then
one of them is always a saddle, whereas the other’s behavior depends on parametric conditions. It has
been proven that this point is enclosed by unstable limit cycles in the presence of certain parametric
conditions. Thus, the system exhibits bistability and oscillatory coexistence for both the populations for
a given parametric domain. The first Lyapunov number has been calculated for studying the stability
of limit cycles.

The equivalent model (2.4) can have 0 to 2 interior equilibrium points as the bifurcation parameter
m crosses a certain threshold value. The appearance of saddle-node bifurcation has been demonstrated
via Sotomayor’s theorem. Ecologically speaking, if m is less than the maximum of the threshold value
of m, then both species will coexist; and above that, extinction is faced by the prey species. Moreover,
the model (2.4) undergoes Bogdanov-Taken bifurcation near the degenerate equilibrium point. The
parameters m and ρ are used as bifurcation parameters, and the system is reduced to standard form. In
terms of ecology, a small disturbance in the bifurcation parameters can lead to coexistence, oscillation,
or even extinction. Finally, we have discussed the combined influence of the non-linear harvesting and
the Allee effect, which may be useful to protect the system at low population density of prey species.
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