Research article

Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor

  • Acdemic Editor: Baojun Song
  • Received: 27 March 2022 Revised: 17 April 2022 Accepted: 20 April 2022 Published: 28 April 2022
  • In this paper, we investigate the complex dynamics of a classical discrete-time prey-predator system with the cost of anti-predator behaviors. We first give the existence and stability of fixed points of this system. And by using the central manifold theorem and bifurcation theory, we prove that the system will experience flip bifurcation and Neimark-Sacker bifurcation at the equilibrium points. Furthermore, we illustrate the bifurcation phenomenon and chaos characteristics via numerical simulations. The results may enrich the dynamics of the prey-predator systems.

    Citation: Ceyu Lei, Xiaoling Han, Weiming Wang. Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 6659-6679. doi: 10.3934/mbe.2022313

    Related Papers:

  • In this paper, we investigate the complex dynamics of a classical discrete-time prey-predator system with the cost of anti-predator behaviors. We first give the existence and stability of fixed points of this system. And by using the central manifold theorem and bifurcation theory, we prove that the system will experience flip bifurcation and Neimark-Sacker bifurcation at the equilibrium points. Furthermore, we illustrate the bifurcation phenomenon and chaos characteristics via numerical simulations. The results may enrich the dynamics of the prey-predator systems.



    加载中


    [1] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker Inc., New York, 1980.
    [2] M. Kot, Elements of Mathematical Ecology, Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511608520
    [3] M. A. Aziz-Alaoui, O. M. Daher, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-Type Ⅱ schemes, Appl. Math. Lett., 16 (2003), 1069–1075. https://doi.org/10.1016/S0893-9659(03)90096-6 doi: 10.1016/S0893-9659(03)90096-6
    [4] M. Sen, M. Banerjee, A. Morozov, Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect, Ecol. Complexity, 11 (2012), 12–27. https://doi.org/10.1016/j.ecocom.2012.01.002 doi: 10.1016/j.ecocom.2012.01.002
    [5] J. C. Huang, D. M. Xiao, Analyses of bifurcations and stability in a predator-prey system with Holling Type-Ⅳ functional response, Acta Math. Appl. Sinica, 20 (2004), 167–178. https://doi.org/10.1007/s10255-004-0159-x doi: 10.1007/s10255-004-0159-x
    [6] J. Wang, Y. Cai, S. Fu, W. Wang, The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge, Chaos, 29 (2019), 83109. https://doi.org/10.1063/1.5111121 doi: 10.1063/1.5111121
    [7] T. Qiao, Y. Cai, S. Fu, W. Wang, Stability and Hopf bifurcation in a predator-prey model with the cost of anti-predator behaviors, Int. J. Bifurcation Chaos, 29 (2019), 1950185. https://doi.org/10.1142/S0218127419501852 doi: 10.1142/S0218127419501852
    [8] H. Zhang, Y. Cai, S. Fu, W. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034
    [9] R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459–467. https://doi.org/10.1038/261459a0 doi: 10.1038/261459a0
    [10] L. Yuan, Q. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system, Appl. Math. Modell., 39 (2015), 2345–2362. https://doi.org/10.1016/j.apm.2014.10.040 doi: 10.1016/j.apm.2014.10.040
    [11] M. Zhao, C. Li, J. Wang, Complex dynamic behaviors of a discrete-time predator-prey system, J. Appl. Anal. Comput., 7 (2017), 478–500. https://doi.org/10.11948/2017030 doi: 10.11948/2017030
    [12] S. M. Rana, Bifurcation and complex dynamics of a discrete-time predator-prey system, Comput. Ecol. Software, 5 (2015), 187–200.
    [13] A. Q. Khan, K. Tanzeela, Neimark-Sacker bifurcation and hybrid control in a discrete-time Lotka-Volterra model, Math. Methods Appl. Sci., 43 (2020), 5887–5904. https://doi.org/10.1002/mma.6331 doi: 10.1002/mma.6331
    [14] H. N. Agiza, E. M. ELabbasy, H. EL-Metwally, A. A. Elsadany, Chaotic dynamics of a discrete prey-predator model with Holling-Type Ⅱ, Nonlinear Anal. Real World Appl., 10 (2019), 116–129. https://doi.org/10.1016/j.nonrwa.2007.08.029 doi: 10.1016/j.nonrwa.2007.08.029
    [15] G. Feng, X. Song, Bifurcation and chaos of a discrete-time population model, Discrete Dyn. Nat. Soc., 2020 (2020), 1–7. https://doi.org/10.1155/2020/8474715 doi: 10.1155/2020/8474715
    [16] A. G. M. Selvam, S. B. Jacob, R Dhineshbabu, Bifurcation and chaos control for prey predator model with step size in discrete time, J. Phys. Conf. Ser., 1543 (2020), 12010. https://doi.org/10.1088/1742-6596/1543/1/012010 doi: 10.1088/1742-6596/1543/1/012010
    [17] E. M. Elabbasy, A. A. Elsadany, Y. Zhang, Bifurcation analysis and chaos in a discrete reduced Lorenz system, Appl. Math. Comput., 228 (2014), 184–194. https://doi.org/10.1016/j.amc.2013.11.088 doi: 10.1016/j.amc.2013.11.088
    [18] L. F. Cheng, H. J. Cao, Bifurcation analysis of a discrete-time ratio-dependent predator-prey Model with Allee effect, Commun. Nonlinear Sci. Numer. Simul., 38 (2016), 288–302. https://doi.org/10.1016/j.cnsns.2016.02.038 doi: 10.1016/j.cnsns.2016.02.038
    [19] Z. M. He, X. Lai, Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Anal. Real World Appl., 12 (2011), 403–417. https://doi.org/10.1016/j.nonrwa.2010.06.026 doi: 10.1016/j.nonrwa.2010.06.026
    [20] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
    [21] R.M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1973.
    [22] X. Li, W. Jiang, J. Shi, Hopf bifurcation and turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 78 (2013), 287–306. https://doi.org/10.1093/imamat/hxr050 doi: 10.1093/imamat/hxr050
    [23] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. https://doi.org/10.1007/978-1-4612-1140-2
    [24] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1998. https://doi.org/10.1007/b98848
    [25] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990. https://doi.org/10.1007/978-1-4757-4067-7
    [26] G. Chen, X. Dong, From Chaos to Order: Perspectives, Methodologies, and Applications, World Scientific, Singapore, 1998. https://doi.org/10.1142/3033
    [27] S. Elaydi, An Introduction to Difference Equations, 3rd edition, Springer-Verlag, New York, 2005. https://doi.org/10.1007/0-387-27602-5
    [28] S. Lynch, Dynamical Systems with Applications Using Mathematica, 1st edition, Birkhauser, Boston, 2007. https://doi.org/10.1007/978-0-8176-4586-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1620) PDF downloads(160) Cited by(3)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog