Identifying and delineating suspicious regions in thermal breast images poses significant challenges for radiologists during the examination and interpretation of thermogram images. This paper aims to tackle concerns related to enhancing the differentiation between cancerous regions and the background to achieve uniformity in the intensity of breast cancer's (BC) existence. Furthermore, it aims to effectively segment tumors that exhibit limited contrast with the background and extract relevant features that can distinguish tumors from the surrounding tissue. A new cancer segmentation scheme comprised of two primary stages is proposed to tackle these challenges. In the first stage, an innovative image enhancement technique based on local image enhancement with a hyperbolization function is employed to significantly improve the quality and contrast of breast imagery. This technique enhances the local details and edges of the images while preserving global brightness and contrast. In the second stage, a dedicated algorithm based on an image-dependent weighting strategy is employed to accurately segment tumor regions within the given images. This algorithm assigns different weights to different pixels based on their similarity to the tumor region and uses a thresholding method to separate the tumor from the background. The proposed enhancement and segmentation methods were evaluated using the Database for Mastology Research (DMR-IR). The experimental results demonstrate remarkable performance, with an average segmentation accuracy, sensitivity, and specificity coefficient values of 97%, 80%, and 99%, respectively. These findings convincingly establish the superiority of the proposed method over state-of-the-art techniques. The obtained results demonstrate the potential of the proposed method to aid in the early detection of breast cancer through improved diagnosis and interpretation of thermogram images.
Citation: Thaweesak Trongtirakul, Sos Agaian, Adel Oulefki. Automated tumor segmentation in thermographic breast images[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16786-16806. doi: 10.3934/mbe.2023748
Identifying and delineating suspicious regions in thermal breast images poses significant challenges for radiologists during the examination and interpretation of thermogram images. This paper aims to tackle concerns related to enhancing the differentiation between cancerous regions and the background to achieve uniformity in the intensity of breast cancer's (BC) existence. Furthermore, it aims to effectively segment tumors that exhibit limited contrast with the background and extract relevant features that can distinguish tumors from the surrounding tissue. A new cancer segmentation scheme comprised of two primary stages is proposed to tackle these challenges. In the first stage, an innovative image enhancement technique based on local image enhancement with a hyperbolization function is employed to significantly improve the quality and contrast of breast imagery. This technique enhances the local details and edges of the images while preserving global brightness and contrast. In the second stage, a dedicated algorithm based on an image-dependent weighting strategy is employed to accurately segment tumor regions within the given images. This algorithm assigns different weights to different pixels based on their similarity to the tumor region and uses a thresholding method to separate the tumor from the background. The proposed enhancement and segmentation methods were evaluated using the Database for Mastology Research (DMR-IR). The experimental results demonstrate remarkable performance, with an average segmentation accuracy, sensitivity, and specificity coefficient values of 97%, 80%, and 99%, respectively. These findings convincingly establish the superiority of the proposed method over state-of-the-art techniques. The obtained results demonstrate the potential of the proposed method to aid in the early detection of breast cancer through improved diagnosis and interpretation of thermogram images.
[1] | R. Roslidar, M. Syaryadhi, K. Saddami, B. Pradhan, F. Arnia, M. Syukri, et al., Breacnet: A high-accuracy breast thermogram classifier based on mobile convolutional neural network, Math. Biosci. Eng., 19 (2022), 1304–1331. https://doi.org/10.3934/mbe.2022060 doi: 10.3934/mbe.2022060 |
[2] | T. Trongtirakul, A. Oulefki, S. Agaian, W. Chiracharit, Enhancement and segmentation of breast thermograms, in Mobile Multimedia/Image Processing, Security, and Applications 2020, SPIE, 11399 (2020), 96–107. https://doi.org/10.1117/12.2554594 |
[3] | Y. Wang, L. Zhang, Y. Li, F. Wu, S. Cao, F. Ye, Predicting the prognosis of her2-positive breast cancer patients by fusing pathological whole slide images and clinical features using multiple instance learning, Math. Biosci. Eng., 20 (2023), 11196–11211. https://doi.org/10.3934/mbe.2023496 doi: 10.3934/mbe.2023496 |
[4] | D. Sánchez-Ruiz, I. Olmos-Pineda, J. A. Olvera-López, Automatic region of interest segmentation for breast thermogram image classification, Pattern Recogn. Lett., 135 (2020), 72–81. https://doi.org/10.1016/j.patrec.2020.03.025 doi: 10.1016/j.patrec.2020.03.025 |
[5] | O. Mandrik, N. Zielonke, F. Meheus, J. Severens, N. Guha, R. Herrero Acosta, et al., Systematic reviews as a 'lens of evidence': determinants of benefits and harms of breast cancer screening, Int. J. Cancer, 145 (2019), 994–1006. https://doi.org/10.1002/ijc.32211 doi: 10.1002/ijc.32211 |
[6] | U. Raghavendra, A. Gudigar, T. N. Rao, E. J. Ciaccio, E. Ng, U. R. Acharya, Computer-aided diagnosis for the identification of breast cancer using thermogram images: A comprehensive review, Infrared Phys. Technol., 102 (2019), 103041. https://doi.org/10.1016/j.infrared.2019.103041 doi: 10.1016/j.infrared.2019.103041 |
[7] | M. A. S. Al Husaini, M. H. Habaebi, S. A. Hameed, M. R. Islam, T. S. Gunawan, A systematic review of breast cancer detection using thermography and neural networks, IEEE Access, 8 (2020), 208922–208937. https://doi.org/10.1109/ACCESS.2020.3038817 doi: 10.1109/ACCESS.2020.3038817 |
[8] | A. Mashekova, Y. Zhao, E. Y. Ng, V. Zarikas, S. C. Fok, O. Mukhmetov, Early detection of the breast cancer using infrared technology–-a comprehensive review, Therm. Sci. Eng. Prog., 27 (2022), 101142. https://doi.org/10.1016/j.tsep.2021.101142 doi: 10.1016/j.tsep.2021.101142 |
[9] | R. G. Schwartz, M. Brioschi, C. Horner, R. Kane, P. Getson, J. Pittman, et al., The American academy of thermology guidelines for breast 2021, Pan Am. J. Med. Thermol., 8 (2021), 3. http://dx.doi.org/10.18073/pajmt.2021.8.003 doi: 10.18073/pajmt.2021.8.003 |
[10] | T. Trongtirakul, S. Agaian, A. Oulefki, K. Panetta, Method for remote sensing oil spill applications over thermal and polarimetric imagery, IEEE J. Oceanic Eng., 48 (2023), 973–987 https://doi.org/10.1109/JOE.2023.3245759 doi: 10.1109/JOE.2023.3245759 |
[11] | C. A. Lipari, J. F. Head, Advanced infrared image processing for breast cancer risk assessment, in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No. 97CH36136), IEEE, 2 (1997), 673–676. https://doi.org/10.1109/IEMBS.1997.757713 |
[12] | N. Scales, C. Kerry, M. Prize, Automated image segmentation for breast analysis using infrared images, in The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 1 (2004), 1737–1740. https://doi.org/10.1109/IEMBS.2004.1403521 |
[13] | M. EtehadTavakol, S. Sadri, E. Ng, Application of K- and fuzzy C-means for color segmentation of thermal infrared breast images, J. Med. Syst., 34 (2010), 35–42. https://doi.org/10.1007/s10916-008-9213-1 doi: 10.1007/s10916-008-9213-1 |
[14] | P. Kapoor, S. Prasad, Image processing for early diagnosis of breast cancer using infrared images, in 2010 the 2nd International Conference on Computer and Automation Engineering (ICCAE), IEEE, 3 (2010), 564–566. https://doi.org/10.1109/ICCAE.2010.5451827 |
[15] | H. Qi, P. T. Kuruganti, W. E. Snyder, Detecting breast cancer from thermal infrared images by asymmetry analysis, in Medical Devices and Systems, CRC Press, (2016), 597–610. https://doi.org/10.21236/ADA415302 |
[16] | S. Suganthi, S. Ramakrishnan, Anisotropic diffusion filter based edge enhancement for segmentation of breast thermogram using level sets, Biomed. Signal Process. Control, 10 (2014), 128–136. https://doi.org/10.1016/j.bspc.2014.01.008 doi: 10.1016/j.bspc.2014.01.008 |
[17] | N. Golestani, M. EtehadTavakol, E. Ng, Level set method for segmentation of infrared breast thermograms, EXCLI J., 13 (2014), 241–251. |
[18] | D. Sathish, S. Kamath, K. Prasad, R. Kadavigere, R. J. Martis, Asymmetry analysis of breast thermograms using automated segmentation and texture features, Signal, Image Video Process., 11 (2017), 745–752. https://doi.org/10.1007/s11760-016-1018-y doi: 10.1007/s11760-016-1018-y |
[19] | R. Ramya Devi, G. Anandhamala, Analysis of breast thermograms using asymmetry in infra-mammary curves, J. Med. Syst., 43 (2019), 1–9. https://doi.org/10.1007/s10916-019-1267-8 doi: 10.1007/s10916-019-1267-8 |
[20] | S. Pramanik, D. Bhattacharjee, M. Nasipuri, Mspsf: A multi-scale local intensity measurement function for segmentation of breast thermogram, IEEE Trans. Instrum. Meas., 69 (2019), 2722–2733. https://doi.org/10.1109/TIM.2019.2925879 doi: 10.1109/TIM.2019.2925879 |
[21] | S. Pramanik, S. Ghosh, D. Bhattacharjee, M. Nasipuri, Segmentation of breast-region in breast thermogram using arc-approximation and triangular-space search, IEEE Trans. Instrum. Meas., 69 (2019), 4785–4795. https://doi.org/10.1109/TIM.2019.2956362 doi: 10.1109/TIM.2019.2956362 |
[22] | S. T. Kakileti, G. Manjunath, H. J. Madhu, Cascaded CNN for view independent breast segmentation in thermal images, in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, (2019), 6294–6297. https://doi.org/10.1109/EMBC.2019.8856628 |
[23] | A. S. Koshki, M. Zekri, M. R. Ahmadzadeh, S. Sadri, E. Mahmoudzadeh, Extending contour level set model for multi-class image segmentation with application to breast thermography images, Infrared Phys. Technol., 105 (2020), 103174. https://doi.org/10.1016/j.infrared.2019.103174 doi: 10.1016/j.infrared.2019.103174 |
[24] | A. Ibrahim, S. Mohammed, H. A. Ali, S. E. Hussein, Breast cancer segmentation from thermal images based on chaotic salp swarm algorithm, IEEE Access, 8 (2020), 122121–122134. https://doi.org/10.1109/ACCESS.2020.3007336 doi: 10.1109/ACCESS.2020.3007336 |
[25] | U. R. Acharya, E. Y. K. Ng, S. V. Sree, C. K. Chua, S. Chattopadhyay, Higher order spectra analysis of breast thermograms for the automated identification of breast cancer, Expert Syst., 31 (2014), 37–47. https://doi.org/10.1111/j.1468-0394.2012.00654.x doi: 10.1111/j.1468-0394.2012.00654.x |
[26] | C. R. Nicandro, M. M. Efrén, A. A. Maria Yaneli, M. D. C. M. Enrique, A. M. Hector Gabriel, P. C. Nancy, et al., Evaluation of the diagnostic power of thermography in breast cancer using bayesian network classifiers, Comput. Math. Methods Med., 2013 (2013). https://doi.org/10.1155/2013/264246 doi: 10.1155/2013/264246 |
[27] | B. Krawczyk, G. Schaefer, A hybrid classifier committee for analysing asymmetry features in breast thermograms, Appl. Soft Comput., 20 (2014), 112–118. https://doi.org/10.1016/j.asoc.2013.11.011 doi: 10.1016/j.asoc.2013.11.011 |
[28] | A. Baccouche, B. Garcia-Zapirain, C. Castillo Olea, A. S. Elmaghraby, Connected-unets: a deep learning architecture for breast mass segmentation, NPJ Breast Cancer, 7 (2021), 151. https://doi.org/10.1038/s41523-021-00358-x doi: 10.1038/s41523-021-00358-x |
[29] | A. Oulefki, S. Agaian, T. Trongtirakul, A. K. Laouar, Automatic COVID-19 lung infected region segmentation and measurement using CT-scans images, Pattern Recogn., 114 (2021), 107747. https://doi.org/10.1016/j.patcog.2020.107747 doi: 10.1016/j.patcog.2020.107747 |
[30] | M. C. Araújo, R. C. Lima, R. M. De Souza, Interval symbolic feature extraction for thermography breast cancer detection, Expert Syst. Appl., 41 (2014), 6728–6737. https://doi.org/10.1016/j.eswa.2014.04.027 doi: 10.1016/j.eswa.2014.04.027 |
[31] | M. A. Ali, G. I. Sayed, T. Gaber, A. E. Hassanien, V. Snasel, L. F. Silva, Detection of breast abnormalities of thermograms based on a new segmentation method, in 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), IEEE, (2015), 255–261. https://doi.org/10.15439/2015F318 |
[32] | M. EtehadTavakol, V. Chandran, E. Ng, R. Kafieh, Breast cancer detection from thermal images using bispectral invariant features, Int. J. Therm. Sci., 69 (2013), 21–36. https://doi.org/10.1016/j.ijthermalsci.2013.03.001 doi: 10.1016/j.ijthermalsci.2013.03.001 |
[33] | M. Milosevic, D. Jankovic, A. Peulic, Thermography based breast cancer detection using texture features and minimum variance quantization, EXCLI J., 13 (2014), 1204. |
[34] | D. Sathish, S. Kamath, K. Prasad, R. Kadavigere, Role of normalization of breast thermogram images and automatic classification of breast cancer, Visual Comput., 35 (2019), 57–70. https://doi.org/10.1007/s00371-017-1447-9 doi: 10.1007/s00371-017-1447-9 |
[35] | J. Pérez-Martín, R. Sánchez-Cauce, Quality analysis of a breast thermal images database, Health Inf. J., 29 (2023), 14604582231153779. https://doi.org/10.1177/14604582231153779 doi: 10.1177/14604582231153779 |
[36] | L. Silva, D. Saade, G. Sequeiros, A. Silva, A. Paiva, R. Bravo, et al., A new database for breast research with infrared image, J. Med. Imaging Health Inf., 4 (2014), 92–100. https://doi.org/10.1166/jmihi.2014.1226 doi: 10.1166/jmihi.2014.1226 |
[37] | Ann Arbor Thermography, Non-Invasive Imaging and Screening for Breast Cancer, Pain, and More, Available from: https://aathermography.com/. |
[38] | What Is Breast Thermography, 2020. Available from: http://www.thermologyonline.org/Breast/breast_thermography_what.htm. |
[39] | Breast Thermography Case Studies, Available from: http://www.breastthermography.com/case_studies.htm. |
[40] | Case Study, 2020. Available from: https://thermographyofiowa.com/case-studies/. |
[41] | A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, et al., Segment anything, preprint, arXiv: 2304.02643. |
[42] | M. Cacciabue, A. Currá, M. I. Gismondi, Viralplaque: a fiji macro for automated assessment of viral plaque statistics, PeerJ, 7 (2019), e7729. https://doi.org/10.7717/peerj.7729 doi: 10.7717/peerj.7729 |
[43] | X. Chen, L. Pan, A survey of graph cuts/graph search based medical image segmentation, IEEE Rev. Biomed. Eng., 11 (2018), 112–124. https://doi.org/10.1109/RBME.2018.2798701 doi: 10.1109/RBME.2018.2798701 |
[44] | H. Oliveira, P. H. Gama, I. Bloch, R. M. Cesar Jr, Meta-learners for few-shot weakly-supervised medical image segmentation, preprint, arXiv: 2305.06912. |
[45] | M. B. Tayel, A. M. Elbagoury, Automatic breast thermography segmentation based on fully convolutional neural networks, Int. J. Res. Rev., 7 (2020), 10. |
[46] | R. Sánchez-Cauce, J. Pérez-Martín, M. Luque, Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data, Comput. Methods Programs Biomed., 204 (2021), 106045. https://doi.org/10.1016/j.cmpb.2021.106045 doi: 10.1016/j.cmpb.2021.106045 |
[47] | S. Pramanik, D. Bhattacharjee, M. Nasipuri, Texture analysis of breast thermogram for differentiation of malignant and benign breast, in 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, (2016), 8–14. https://doi.org/10.1109/ICACCI.2016.7732018 |
[48] | V. Lessa, M. Marengoni, Applying artificial neural network for the classification of breast cancer using infrared thermographic images, in Computer Vision and Graphics: International Conference, ICCVG 2016, Warsaw, Poland, September 19–21, 2016, Proceedings 8, Springer, (2016), 429–438. |
[49] | U. R. Gogoi, M. K. Bhowmik, A. K. Ghosh, D. Bhattacharjee, G. Majumdar, Discriminative feature selection for breast abnormality detection and accurate classification of thermograms, in 2017 International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), IEEE, (2017), 39–44. https://doi.org/10.1109/IESPC.2017.8071861 |
[50] | M. D. F. O. Baffa, A. M. Coelho, A. Conci, Segmentação de imagens infravermelhas para detecção do câncer de mama utilizando U-net CNN, in Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde, SBC, (2021), 119–128. |