Citation: Xi Lu, Zejun You, Miaomiao Sun, Jing Wu, Zhihong Zhang. Breast cancer mitotic cell detection using cascade convolutional neural network with U-Net[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 673-695. doi: 10.3934/mbe.2021036
[1] | C. W. Elston, I. O. Ellis, Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up, Histopathology, 19 (1991), 403–410. doi: 10.1111/j.1365-2559.1991.tb00229.x |
[2] | G. Jiménez, D. Racoceanu, Deep learning for semantic segmentation vs. classification in computational pathology: Application to mitosis analysis in breast cancer grading, Front. Bioeng. Biotechnol., (2019), 7–145. |
[3] | Mitosis Detection Contest[EB/OL], http://ipal.cnrs.fr/ICPR2012/. |
[4] | MITOS-ATYPIA-14 Contest[EB/OL], https://mitos-atypia-14.grand-challenge.org/home/. |
[5] | C. Sommer, L. Fiaschi, F. A. Hamprecht, D. W. Gerlich, Learning-based mitotic cell detection in histopathological images, Proc. 21st Int. Conf. Pattern Recognit., (2012), 2306–2309. |
[6] | S. Berg, D. Kutra, T. Kroeger, C. N. Straehle, B. X. Kausler, C. Haubold, et al., Ilastik: Interactive machine learning for (bio)image analysis, Nat. Methods, (2019), 1226–1232. |
[7] | C. H. Huang, H. K. Lee, Automated mitosis detection based on exclusive independent component analysis, Proc. 21st Int. Conf. Pattern Recognit., (2012), 1856–1859. |
[8] | A. M. Khan, H. El-Daly, N. M. Rajpoot, A gamma-gaussian mixture model for detection of mitotic cells in breast cancer histopathology images, Proc. 21st Int. Conf. Pattern Recognit., (2012), 149–152. |
[9] | H. Irshad, Automated mitosis detection in histopathology using morphological and multi-channel statistics features, J. Pathol. Inf., 4 (2013), 10. |
[10] | A. Tashk, M. S. Helfroush, H. Danyali, M. Akbarzadeh-jahromi, Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features, Appl. Math. Modell., 39 (2015), 6165–6182. |
[11] | F. Pourakpour, H. Ghassemian, Automated mitosis detection based on combination of effective textural and morphological features from breast cancer histology slide images, Biomed. Eng. IEEE, 39 (2016), 214–223. |
[12] | H. Wang, A. Cruzroa, A. Basavanhally, H. Gilmore, N. Shih, M. Feldman, et al., Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features, J. Med. Imag., 1 (2014), 034003. |
[13] | T. Kausar, M. Wang, B. Wu, M. Idrees, B. Kanwal, Multi-scale deep neural network for mitosis detection in histological images, Proc. Int. Conf. Intell. Informat. Biomed. Sci., (2018), 47–51. |
[14] | D. C. Cireşan, A. Giusti, L. M. Gambardella, J. Schmidhuber, Mitosis detection in breast cancer histology images with deep neural networks, Int. Conf Med. Image Comput. Comput. Assisted Intervention, (2013), 411–418. |
[15] | H. Chen, Q. Dou, X. Wang, J. Qin, P. A. Heng, Mitosis detection in breast cancer histology images via deep cascaded networks, Proc. 30th AAAI Conf. Artif. Intell., (2016), 1160–1166. |
[16] | M. Ma, Y. Shi, W. Li, Y. Gao, J. Xu, A novel two-stage deep method for mitosis detection in breast cancer histology images, Proc. 24th Int. Conf. Pattern Recognit., (2018), 3892–3897. |
[17] | N. Maroof, A. Khan, S. A. Qureshi, A. Rehman, R. K. Khalil, S. Shim, Mitosis detection in breast cancer histopathology images using hybrid feature space, Photodiagn. Photodyn. Ther., (2020), 101885. |
[18] | Y. Zhang, J. Chen, X. Pan, Multi-feature fusion of deep networks for mitosis segmentation in histological images, Int. J. Imag. Syst. Technol., (2020), 1–13. |
[19] | M. Hwang, D. Wang, C. Wu, W. C. Jiang, X. X. Kong, K. Hwang, et al., A fuzzy segmentation method to learn classification of mitosis, Int. J. Fuzzy Syst., (2020), 1653–1664. |
[20] | C. Li, X. Wang, W. Liu, L. J. Latecki, DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks, Med. Image Anal., (2018), 121–133. |
[21] | S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell. (2017), 1137–1149. |
[22] | K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceed. IEEE Conf. Comput. Vision Pattern Recognit., (2016), 770–778. |
[23] | H. Lei, S. Liu, H. Xie, J. Y. Kuo, B. Lei, An improved object detection method for mitosis detection, Proc. 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., (2019), 130–133. |
[24] | A. Sengupta, Y. Ye, R. Wang, C. Liu, K. Roy, Going deeper in spiking neural networks: VGG and residual architectures, Front. Neurosci., (2019), 1–10 |
[25] | C. Li, X. Wang, W. Liu, L. J. Latecki, B. Wang, J. Huang, Weakly supervised mitosis detection in breast histopathology images using concentric loss, Med. Image Anal. (2019), 165–178. |
[26] | K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, Proceed. IEEE Int. Conf. Comput. Vision, (2017), 2980–2988. |
[27] | V. Dodballapur, Y. Song, H. Huang, M. Chen, W. Chrzanowski, W. Cai, Mask-driven mitosis detection in histopathology images, Proceed. IEEE 16th Int. Symp. Biomed. Imaging, (2019), 1855–1859. |
[28] | D. Cai, X. Sun, N. Zhou, X. Han, J. Yao, Efficient mitosis detection in breast cancer histology images by RCNN, Proceed. IEEE 16th Int. Symp. Biomed. Imaging, (2019), 919–922. |
[29] | Y. Li, E. Mercan, S. Knezevitch, J. G. Elmore, L. G. Shapiro, Efficient and accurate mitosis detection, a lightweight RCNN approach, Proceed. 7th Int. Conf Pattern Recognit. Appl. Methods, (2018), 69–77. |
[30] | H. J. Lei, S. M. Liu, A. Elazab, X. H. Gong, B. Y. Lei, Attention-guided multi-branch convolutional neural network for mitosis detection from histopathological images, J. Biomed. Health Inf., (2020), 2168–2194. |
[31] | T. Mahmood, M. Arsalan, M. Owais, M. B. Lee, K. R. Park, Artificial intelligence-based mitosis detection in breast cancer histopathology images using faster R-CNN and deep CNNs, J. Clin. Med., (2020), 749 |
[32] | S. Meriem, T. Wang, S. A. Al-Fadhli, PartMitosis: A partially supervised deep learning framework for mitosis detection in breast cancer histopathology images, IEEE Access, (2020), 1–1. |
[33] | S. Meriem, X. Wang, T. Wang, MaskMitosis: A deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images, Med. Biol. Eng. Comput., (2020) 1603–1623. |
[34] | N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, A. Sethi, A dataset and a technique for generalized nuclear segmentation for computational pathology, IEEE Trans. Med. Imaging, 36 (2017), 1550–1560. doi: 10.1109/TMI.2017.2677499 |
[35] | O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomedical image segmentation, Int. Conf Med. Image Comput. Comput. Assisted Intervention, (2015), 234–241. |
[36] | Z. W. Zhou, M. Mahfuzur, R. Siddiquee, N Tajbakhsh, J. M. Liang, UNet ++: A nested U-Net architecture for medical image segmentation, Dlmia, (2018), 1–7. |
[37] | C. Y. Lee, S. Xie, P. Gallagher, Z. Zhang, Z. W. Tu, Deeply-supervised nets, Proceed. 2015 18th Int. Conf. Artif. Int. Stat., (2015), 562–570. |
[38] | C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, M. J. Cardoso, Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations, Comput. Vision Pattern Recogn., 2017. |
[39] | C. Yamauchi, T. Hasebe, M. Iwasaki, S. Imoto, N. Wada, M. Fukayama, et al., Accurate assessment of lymph vessel tumor emboli in invasive ductal carcinoma of the breast according to tumor areas, and their prognostic significance, Hum. Pathol., 38 (2007), 247–259. |
[40] | H. Wang, A. Cruz-Roa, A. Basavanhally, H. Gilmore, N. Shih, M. Feldman, et al., Cascaded ensemble of convolutional neural networks and handcrafted features for mitosis detection, Proc. SPIE, 9041 (2014). |
[41] | F. Milletari, N. Navab, S. Ahmadi, V-Net: Fully convolutional neural networks for volumetric medical image segmentation, proc. Int. Conf. 3D Vision, (2016), 565–571. |
[42] | K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., (2016), 770–778. |
[43] | P. Vamplew, R. Dazele, C. Foale, Softmax exploration strategies for multi-objective reinforcement learning, Neuro comput., (2017), 74–86. |
[44] | A. Vahadane, T. Peng, S. Albarqouni, M. Baust, K. Steiger, Structure-preserved color normalization for histological images, IEEE Int. Symp. Biomed. Imaging, (2015), 1012–1015. |
[45] | A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural networks, Int. Conf. Neural Inf. Process. Syst., (2012), 1097–1105. |
[46] | N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man. Cybern., 9 (1979), 62–66. doi: 10.1109/TSMC.1979.4310076 |
[47] | M. Veta, J. Pluim, Detecting mitotic figures in breast cancer histopathology images, SPIE Med. Imaging, 8676 (2013), 867607. |
[48] | C. D. Malon, C. Eric, Classification of mitotic figures with convolutional neural networks and seeded blob features, J. Pathol. Inf., 4 (2013), 9. |
[49] | M Veta, P. J. Diest, S. M. Willems, H. Wang, A. Madabhushi, A. Cruz-Roa, et al., Assessment of algorithms for mitosis detection in breast cancer histopathology images, Med. Image Anal., 20 (2015), 237–248. |
[50] | H. Chen, X. Wang, P. A. Heng, Automated mitosis detection with deep regression networks, 2016 IEEE 13th Int. Symp. Biomed. Imaging, 2016, 1945–8452. |
[51] | C. Li, X. Wang, W. Liu, L. J. Latecki, DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks, Med. Image Anal., 45 (2018), 121–133. |