In recent years, the global outbreak of COVID-19 has posed an extremely serious life-safety risk to humans, and in order to maximize the diagnostic efficiency of physicians, it is extremely valuable to investigate the methods of lesion segmentation in images of COVID-19. Aiming at the problems of existing deep learning models, such as low segmentation accuracy, poor model generalization performance, large model parameters and difficult deployment, we propose an UNet segmentation network integrating multi-scale attention for COVID-19 CT images. Specifically, the UNet network model is utilized as the base network, and the structure of multi-scale convolutional attention is proposed in the encoder stage to enhance the network's ability to capture multi-scale information. Second, a local channel attention module is proposed to extract spatial information by modeling local relationships to generate channel domain weights, to supplement detailed information about the target region to reduce information redundancy and to enhance important information. Moreover, the network model encoder segment uses the Meta-ACON activation function to avoid the overfitting phenomenon of the model and to improve the model's representational ability. A large number of experimental results on publicly available mixed data sets show that compared with the current mainstream image segmentation algorithms, the pro-posed method can more effectively improve the accuracy and generalization performance of COVID-19 lesions segmentation and provide help for medical diagnosis and analysis.
Citation: Mingju Chen, Sihang Yi, Mei Yang, Zhiwen Yang, Xingyue Zhang. UNet segmentation network of COVID-19 CT images with multi-scale attention[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16762-16785. doi: 10.3934/mbe.2023747
In recent years, the global outbreak of COVID-19 has posed an extremely serious life-safety risk to humans, and in order to maximize the diagnostic efficiency of physicians, it is extremely valuable to investigate the methods of lesion segmentation in images of COVID-19. Aiming at the problems of existing deep learning models, such as low segmentation accuracy, poor model generalization performance, large model parameters and difficult deployment, we propose an UNet segmentation network integrating multi-scale attention for COVID-19 CT images. Specifically, the UNet network model is utilized as the base network, and the structure of multi-scale convolutional attention is proposed in the encoder stage to enhance the network's ability to capture multi-scale information. Second, a local channel attention module is proposed to extract spatial information by modeling local relationships to generate channel domain weights, to supplement detailed information about the target region to reduce information redundancy and to enhance important information. Moreover, the network model encoder segment uses the Meta-ACON activation function to avoid the overfitting phenomenon of the model and to improve the model's representational ability. A large number of experimental results on publicly available mixed data sets show that compared with the current mainstream image segmentation algorithms, the pro-posed method can more effectively improve the accuracy and generalization performance of COVID-19 lesions segmentation and provide help for medical diagnosis and analysis.
[1] | C. Wang, P. W. Horby, F. G. Hayden, G. F. Gao, A novel coronavirus outbreak of global health concern, Lancet, 395 (2020), 470–473. https://doi.org/10.1016/S0140-6736(20)30185-9 doi: 10.1016/S0140-6736(20)30185-9 |
[2] | C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395 (2020), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 doi: 10.1016/S0140-6736(20)30183-5 |
[3] | N. Mu, H. Wang, Y. Zhang, J. Jiang, J. Tang, Progressive global perception and local polishing network for lung infection segmentation of COVID-19 CT images, Pattern Recognit., 120 (2021), 108168. https://doi.org/10.1016/j.patcog.2021.108168 doi: 10.1016/j.patcog.2021.108168 |
[4] | Y. Fang, H. Zhang, J. Xie, M. Lin, L. Ying, P. Pang, et al., Sensitivity of chest CT for COVID-19: comparison to RT-PCR, Radiology, 296 (2020), E115–E117. https://doi.org/10.1148/radiol.2020200432 doi: 10.1148/radiol.2020200432 |
[5] | S. Inui, A. Fujikawa, M. Jitsu, N. Kunishima, S. Watanabe, Y. Suzuki, et al., Chest CT findings in cases from the cruise ship diamond princess with coronavirus disease (COVID-19), Radiol. Cardiothorac. Imaging, 2 (2020), e200110. https://doi.org/10.1148/ryct.2020200110 doi: 10.1148/ryct.2020200110 |
[6] | C. Butt, J. Gill, D. Chun, B. A. Babu, Deep learning system to screen coronavirus disease 2019 pneumonia (Retracted Article), Appl. Intell., 53 (2023), 4874–4874. https://doi.org/10.1007/s10489-020-01714-3 doi: 10.1007/s10489-020-01714-3 |
[7] | P. Arbelaez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011), 898–916. https://doi.org/10.1109/TPAMI.2010.161 doi: 10.1109/TPAMI.2010.161 |
[8] | C. Shen, N. Yu, S. Cai, J. Zhou, J. Sheng, K. Liu, et al., Quantitative computed tomography analysis for stratifying the severity of Coronavirus Disease 2019, J. Pharm. Anal., 10 (2020), 123–129. https://doi.org/10.1016/j.jpha.2020.03.004 doi: 10.1016/j.jpha.2020.03.004 |
[9] | A. Oulefki, S. Agaian, T. Trongtirakul, A. K. Laouar, Automatic COVID-19 lung infected region segmentation and measurement using CT-scans images, Pattern Recognit., 114 (2021), 107747. https://doi.org/10.1016/j.patcog.2020.107747 doi: 10.1016/j.patcog.2020.107747 |
[10] | J. Wen, S. Xuan, Y. Li, Q. Gao, Q. Peng, Image-segmentation algorithm based on wavelet and data-driven neutrosophic fuzzy clustering, Imaging Sci. J., 67 (2019), 63–75. https://doi.org/10.1080/13682199.2018.1549694 doi: 10.1080/13682199.2018.1549694 |
[11] | R. Pohle, K. D. Toennies, Segmentation of medical images using adaptive region growing, in Medical Imaging 2001: Image Processing, (2001), 1337–1346. https://doi.org/10.1117/12.431013 |
[12] | Z. Tu, S. C. Zhu, Image segmentation by data-driven Markov chain Monte Carlo, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002), 657–673. https://doi.org/10.1109/34.1000239 doi: 10.1109/34.1000239 |
[13] | E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017), 640–651. https://doi.org/10.1109/TPAMI.2016.2572683 doi: 10.1109/TPAMI.2016.2572683 |
[14] | V. Badrinarayanan, A. Kendall, R. Cipolla, SegNet: a deep convolutional encoder-decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615 doi: 10.1109/TPAMI.2016.2644615 |
[15] | O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, (2015), 234–241. https://doi.org/10.1007/978-3-319-24574-4_28 |
[16] | Z. Zhou, M. R. Siddiquee, N. Tajbakhsh, J. Liang, UNet++: a nested U-Net architecture for medical image segmentation, in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, (2018), 3–11. https://doi.org/10.1007/978-3-030-00889-5_1 |
[17] | G. Rani, P. Thakkar, A. Verma, V. Mehta, R. Chavan, V. S. Dhaka, et al., KUB-UNet: segmentation of organs of urinary system from a KUB X-ray image, Comput. Methods Programs Biomed., 224 (2022), 107031. https://doi.org/10.1016/j.cmpb.2022.107031 doi: 10.1016/j.cmpb.2022.107031 |
[18] | Z. Tang, W. Zhao, X. Xie, Z. Zhong, F. Shi, T. Ma, et al., Severity assessment of COVID-19 using CT image features and laboratory indices, Phys. Med. Biol., 66 (2021), 035015. https://doi.org/10.1088/1361-6560/abbf9e doi: 10.1088/1361-6560/abbf9e |
[19] | X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, et al., A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT, IEEE Trans. Med. Imaging, 39 (2020), 2615–2625. https://doi.org/10.1109/TMI.2020.2995965 doi: 10.1109/TMI.2020.2995965 |
[20] | Y. Akbari, H. Hassen, S. Al-Maadeed, S. M. Zughaier, COVID-19 lesion segmentation using lung CT scan images: comparative study based on active contour models, Appl. Sci., 11 (2021), 8039. https://doi.org/10.3390/app11178039 doi: 10.3390/app11178039 |
[21] | Y. Cao, Z. Xu, J. Feng, C. Jin, X. Han, H. Wu, et al., Longitudinal assessment of COVID-19 using a deep learning-based quantitative CT pipeline: illustration of two cases, Radiol. Cardiothorac. Imaging, 2 (2020), e200082. https://doi.org/10.1148/ryct.2020200082 doi: 10.1148/ryct.2020200082 |
[22] | L. Huang, R. Han, T. Ai, P. Yu, H. Kang, Q. Tao, et al., Serial quantitative chest CT assessment of COVID-19: a deep learning approach, Radiol. Cardiothorac. Imaging, 2 (2020), e200075. https://doi.org/10.1148/ryct.2020200075 doi: 10.1148/ryct.2020200075 |
[23] | F. Shan, Y. Gao, J. Wang, W. Shi, N. Shi, M. Han, et al., Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction, Med. Phys., 48 (2021), 1633–1645. https://doi.org/10.1002/mp.14609 doi: 10.1002/mp.14609 |
[24] | S. Chaganti, P. Grenier, A. Balachandran, G. Chabin, S. Cohen, T. Flohr, et al., Automated quantification of CT patterns associated with COVID-19 from chest CT, Radiol. Artif. Intell., 2 (2020), e200048. https://doi.org/10.1148/ryai.2020200048 doi: 10.1148/ryai.2020200048 |
[25] | Q. Yan, B. Wang, D. Gong, C. Luo, W. Zhao, J. Shen, et al., COVID-19 chest CT image segmentation – a deep convolutional neural network solution, preprint, arXiv: 2004.10987. |
[26] | D. P. Fan, T. Zhou, G. Ji, Y. Zhou, G. Chen, H. Fu, et al., Inf-Net: automatic COVID-19 lung infection segmentation from CT images, IEEE Trans. Med. Imaging., 39 (2020), 2626–2637. https://doi.org/10.1109/TMI.2020.2996645 doi: 10.1109/TMI.2020.2996645 |
[27] | Y. Jiang, H. Chen, M. Loew, H. Ko, COVID-19 CT image synthesis with a conditional generative adversarial network, IEEE J. Biomed. Health. Inf., 25 (2020), 441–452. https://doi.org/10.1109/JBHI.2020.3042523 doi: 10.1109/JBHI.2020.3042523 |
[28] | V. K. Singh, M. Abdel-Nasser, N. Pandey, D. Puig, LungINFseg: segmenting COVID-19 infected regions in lung CT images based on a receptive-field-aware deep learning framework, Diagnostics, 11 (2021), 158. https://doi.org/10.3390/diagnostics11020158 doi: 10.3390/diagnostics11020158 |
[29] | T. He, H. Liu, Z. Zhang, C. Li, Y. Zhou, Research on the application of artificial intelligence in public health management: leveraging artificial intelligence to improve COVID-19 CT image diagnosis, Int. J. Environ. Res. Public Health, 20 (2023), 1158. https://doi.org/10.3390/ijerph20021158 doi: 10.3390/ijerph20021158 |
[30] | J. He, Q. Zhu, K. Zhang, P. Yu, J. Tang, An evolvable adversarial network with gradient penalty for COVID-19 infection segmentation, Appl. Soft Comput., 113 (2021), 107947. https://doi.org/10.1016/j.asoc.2021.107947 doi: 10.1016/j.asoc.2021.107947 |
[31] | Y. Song, J. Liu, X. Liu, J. Tang, COVID-19 infection segmentation and severity assessment using a self-supervised learning approach, Diagnostics, 12 (2022), 1805. https://doi.org/10.3390/diagnostics12081805 doi: 10.3390/diagnostics12081805 |
[32] | M. Versaci, G. Angiulli, P. di Barba, F. C. Morabito, Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates, Open Phys., 18 (2020), 230–240. https://doi.org/10.1515/phys-2020-0159 doi: 10.1515/phys-2020-0159 |
[33] | P. R. G. Kurka, A. A. D. Salazar, Applications of image processing in robotics and instrumentation, Mech. Syst. Signal Process., 124 (2019), 142–169. https://doi.org/10.1016/j.ymssp.2019.01.015 doi: 10.1016/j.ymssp.2019.01.015 |
[34] | J. Hu, L. Shen, S. Albanie, G. Sun, E. Wu, Squeeze-and-excitation networks, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 2011–2023. https://doi.org/10.1109/TPAMI.2019.2913372 doi: 10.1109/TPAMI.2019.2913372 |
[35] | Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-Net: efficient channel attention for deep convolutional neural networks, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020), 11531–11539. https://doi.org/10.1109/CVPR42600.2020.01155 |
[36] | P. Ramachandran, B. Zoph, Q. V. Le, Searching for activation functions, preprint, arXiv: 1710.05941. |
[37] | N. Ma, X. Zhang, M. Liu, J. Sun, Activate or not: learning customized activation, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2021), 8028–8038. |
[38] | R. Zhao, B. Qian, X. Zhang, Y. Li, R. Wei, Y. Liu, et al., Rethinking dice loss for medical image segmentation, in 2020 IEEE International Conference on Data Mining (ICDM), (2020), 851–860. https://doi.org/10.1109/ICDM50108.2020.00094 |
[39] | F. Milletari, N. Navab, S. Ahmadi, V-Net: fully convolutional neural networks for volumetric medical image segmentation, in 2016 Fourth International Conference on 3D Vision (3DV), (2016), 565–571. https://doi.org/10.1109/3DV.2016.79 |
[40] | J. Ma, Y. Wang, X. An, C. Ge, Z. Yu, J. Chen, et al., Towards efficient COVID-19 CT annotation: a benchmark for lung and infection segmentation, preprint, arXiv: 2004.12537. |
[41] | S. P. Morozov, A. E. Andreychenko, N. A. Pavlov, A. V. Vladzymyrskyy, N. V. Ledikhova, V. A. Gombolevskiy, Mosmeddata: chest ct scans with COVID-19 related findings dataset, 2020. https://doi.org/10.1101/2020.05.20.20100362 |
[42] | O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, et al., Attention U-Net: learning where to look for the pancreas, preprint, arXiv: 1804.03999. |
[43] | F. I. Diakogiannis, F. Waldner, P. Caccetta, C. Wu, ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data, ISPRS J. Photogramm. Remote Sens., 162 (2020), 94–114. https://doi.org/10.1016/j.isprsjprs.2020.01.013 doi: 10.1016/j.isprsjprs.2020.01.013 |
[44] | Y. Qiu, Y. Liu, S. Li, J. Xu, MiniSeg: an extremely minimum network for efficient COVID-19 segmentation, in Proceedings of the AAAI Conference on Artificial Intelligence, 35 (2021), 4846–4854. https://doi.org/10.1609/aaai.v35i6.16617 |
[45] | L. Caroprese, E. Vocaturo, E. Zumpano, Argumentation approaches for explanaible ai in medical informatics, 16 (2022), 200109. https://doi.org/10.1016/j.iswa.2022.200109 |
[46] | E. Zumpano, A. Fuduli, E. Vocaturo, M. Avolio, Viral pneumonia images classification by Multiple Instance Learning: preliminary results, in Proceedings of the 25th International Database Engineering & Applications Symposium, (2021), 292–296. https://doi.org/10.1145/3472163.3472170 |