The past few decades have seen robust research on questions regarding the existence, form, and properties of stationary distributions of stochastically modeled reaction networks. When a stochastic model admits a stationary distribution an important practical question is: what is the rate of convergence of the distribution of the process to the stationary distribution? With the exception of [
Citation: David F. Anderson, Jinsu Kim. Mixing times for two classes of stochastically modeled reaction networks[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 4690-4713. doi: 10.3934/mbe.2023217
The past few decades have seen robust research on questions regarding the existence, form, and properties of stationary distributions of stochastically modeled reaction networks. When a stochastic model admits a stationary distribution an important practical question is: what is the rate of convergence of the distribution of the process to the stationary distribution? With the exception of [
[1] | C. Xu, M. C. Hansen, C. Wiuf, Full classification of dynamics for one-dimensional continuous time markov chains with polynomial transition rates, 2021, arXiv: 2006.10548. https://doi.org/10.48550/arXiv.2006.10548 |
[2] | D. F. Anderson, J. Kim, Some network conditions for positive recurrence of stochastically modeled reaction networks, SIAM J. Appl. Math., 78 (2018), 2692–2713. https://doi.org/10.1137/17M1161427 doi: 10.1137/17M1161427 |
[3] | A. Agazzi, J. C. Mattingly, Seemingly stable chemical kinetics can be stable, marginally stable, or unstable, Commun. Math. Sci., 18 (2020), 1605–1642. https://dx.doi.org/10.4310/CMS.2020.v18.n6.a5. doi: 10.4310/CMS.2020.v18.n6.a5 |
[4] | D. F. Anderson, D. Cappelletti, J. Kim, Stochastically modeled weakly reversible reaction networks with a single linkage class, J. Appl. Probab., 57 (2020), 792–810. https://doi.org/10.1017/jpr.2020.28 doi: 10.1017/jpr.2020.28 |
[5] | D. F. Anderson, S. L. Cotter, Product-form stationary distributions for deficiency zero networks with non-mass action kinetics, Bull. Math. Biol., 78 (2016), 2390–2407. https://doi.org/10.1007/s11538-016-0220-y doi: 10.1007/s11538-016-0220-y |
[6] | D. F. Anderson, G. Craciun, T. G. Kurtz, Product-form stationary distributions for deficiency zero chemical reaction networks, Bull. Math. Biol., 72 (2010), 1947–1970. https://doi.org/10.1007/s11538-010-9517-4 doi: 10.1007/s11538-010-9517-4 |
[7] | B. Pascual-Escudero, L. Hoessly, An algebraic approach to product-form stationary distributions for some reaction networks, SIAM J. Appl. Dynam. Syst., 21 (2022), 588–615. https://doi.org/10.1137/21M1401498 doi: 10.1137/21M1401498 |
[8] | C. Gadgil, C. H. Lee, H. G. Othmer, A stochastic analysis of first-order reaction networks, Bull. Math. Biol., 67 (2005), 901–946. ttps://doi.org/10.1016/j.bulm.2004.09.009 doi: 10.1016/j.bulm.2004.09.009 |
[9] | D. A. Leven, Y. Peres, Markov Chains and Mixing Times, American Mathematical Society, 107 2017. https://doi.org/10.1007/s00283-018-9839-x |
[10] | D. F. Anderson, T. G. Kurtz, Continuous time Markov chain models for chemical reaction networks, in Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology (ed. H. K. Et al.), Springer, 2011, 3–42. ttps://doi.org/10.1007/978-1-4419-6766-4_1 |
[11] | D. F. Anderson, T. G. Kurtz, Stochastic analysis of biochemical systems, vol. 1.2 of Stochastics in Biological Systems, 1st edition, Springer International Publishing, Switzerland, 2015. https://doi.org/10.1007/978-3-319-16895-1 |
[12] | D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), 403–434. https://doi.org/10.1016/0021-9991(76)90041-3 doi: 10.1016/0021-9991(76)90041-3 |
[13] | D. J. Wilkinson, Stochastic Modelling for Systems Biology, Chapman and Hall/CRC Press, 2006. ttps://doi.org/10.1201/9781351000918 |
[14] | J. Clark, D. A. Holton, A first look at graph theory, World Scientific, 1991. https://doi.org/10.1142/1280 |
[15] | J. Norris, Markov Chains, Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511810633 |
[16] | S. N. Ethier, T. G. Kurtz, Markov processes: Characterization and convergence, vol. 282, John Wiley & Sons, 2009. https://doi.org/10.1002/9780470316658 |
[17] | D. T. Gillespie, Exact Stochastic Simulation of Coupled Chemical Reactions, J. Phys. Chem., 81 (1977), 2340–2361. https://doi.org/10.1021/j100540a008 doi: 10.1021/j100540a008 |
[18] | D. F. Anderson, A modified Next Reaction Method for simulating chemical systems with time dependent propensities and delays, J. Chem. Phys., 127 (2007), 214107. https://doi.org/10.1063/1.2799998 doi: 10.1063/1.2799998 |
[19] | M. A. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem. A, 105 (2000), 1876–1889. https://doi.org/10.1021/jp993732q doi: 10.1021/jp993732q |
[20] | D. F. Anderson, Incorporating postleap checks in tau-leaping, J. Chem. Phys., 128 (2008), 54103. https://doi.org/10.1063/1.2819665 doi: 10.1063/1.2819665 |
[21] | D. T. Gillespie, Approximate accelerated simulation of chemically reaction systems, J. Chem. Phys., 115 (2001), 1716–1733. https://doi.org/10.1063/1.1378322 doi: 10.1063/1.1378322 |
[22] | D. F. Anderson, D. J. Higham, Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics, SIAM Mult. Model. Simul., 10 (2012), 146–179. https://doi.org/10.1137/110840546 doi: 10.1137/110840546 |
[23] | D. F. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math, 71 (2011), 1487–1508. https://doi.org/10.1137/11082631X doi: 10.1137/11082631X |
[24] | D. F. Anderson, Boundedness of trajectories for weakly reversible, single linkage class reaction systems, J. Math. Chem., 49 (2011), 2275–2290. https://doi.org/10.1007/s10910-011-9886-4 doi: 10.1007/s10910-011-9886-4 |
[25] | D. F. Anderson, D. Cappelletti, J. Kim, T. D. Nguyen, Tier structure of strongly endotactic reaction networks, Stochast. Process. Appl., 130 (2020), 7218–7259. https://doi.org/10.1016/j.spa.2020.07.012 doi: 10.1016/j.spa.2020.07.012 |
[26] | S. P. Meyn, R. L. Tweedie, Stability of Markovian Processes Ⅲ: Foster-Lyapunov Criteria for Continuous-Time Processes, Adv. Appl. Probab., 25 (1993), 518–548, http://www.jstor.org/stable/10.2307/1427522. |
[27] | R. L. Tweedie, Criteria for ergodicity, exponential ergodicity and strong ergodicity of Markov processes, J. Appl. Prob., 18 (1981), 122–130. https://doi.org/10.2307/3213172 doi: 10.2307/3213172 |
[28] | A. Athreya, T. Kolba, J. C. Mattingly, Propagating Lyapunov functions to prove noise-induced stabilization, Electron. J. Probab., 17 (2012), 1–38. https://doi.org/10.1214/EJP.v17-2410 doi: 10.1214/EJP.v17-2410 |
[29] | M. Feinberg, Complex balancing in general kinetic systems, Arch. Rational Mech. Anal., 49 (1972), 187–194. https://doi.org/10.1007/BF00255665 doi: 10.1007/BF00255665 |
[30] | M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors - Ⅰ. The Deficiency Zero and Deficiency One theorems, Review Article 25, Chem. Eng. Sci., 42 (1987), 2229–2268. https://doi.org/10.1016/0009-2509(87)80099-4 doi: 10.1016/0009-2509(87)80099-4 |
[31] | F. J. M. Horn, R. Jackson, General Mass Action Kinetics, Arch. Rat. Mech. Anal., 47 (1972), 81–116. https://doi.org/10.1007/BF00251225 doi: 10.1007/BF00251225 |
[32] | D. F. Anderson, G. Craciun, M. Gopalkrishnan, C. Wiuf, Lyapunov functions, stationary distributions, and non-equilibrium potential for reaction networks, Bull. Math. Biol., 77 (2015), 1744–1767. https://doi.org/10.1007/s11538-015-0102-8 doi: 10.1007/s11538-015-0102-8 |