Research article

Estimating the time-dependent effective reproduction number and vaccination rate for COVID-19 in the USA and India

  • Received: 29 October 2022 Revised: 08 December 2022 Accepted: 19 December 2022 Published: 28 December 2022
  • The effective reproduction number, $ R_t $, is a vital epidemic parameter utilized to judge whether an epidemic is shrinking, growing, or holding steady. The main goal of this paper is to estimate the combined $ R_t $ and time-dependent vaccination rate for COVID-19 in the USA and India after the vaccination campaign started. Accounting for the impact of vaccination into a discrete-time stochastic augmented SVEIR (Susceptible-Vaccinated-Exposed-Infectious-Recovered) model, we estimate the time-dependent effective reproduction number $ (R_t) $ and vaccination rate $ (\xi_t) $ for COVID-19 by using a low pass filter and the Extended Kalman Filter (EKF) approach for the period February 15, 2021 to August 22, 2022 in India and December 13, 2020 to August 16, 2022 in the USA. The estimated $ R_t $ and $ \xi_t $ show spikes and serrations with the data. Our forecasting scenario represents the situation by December 31, 2022 that the new daily cases and deaths are decreasing for the USA and India. We also noticed that for the current vaccination rate, $ R_t $ would remain greater than one by December 31, 2022. Our results are beneficial for the policymakers to track the status of the effective reproduction number, whether it is greater or less than one. As restrictions in these countries ease, it is still important to maintain safety and preventive measures.

    Citation: Sarita Bugalia, Jai Prakash Tripathi, Hao Wang. Estimating the time-dependent effective reproduction number and vaccination rate for COVID-19 in the USA and India[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 4673-4689. doi: 10.3934/mbe.2023216

    Related Papers:

  • The effective reproduction number, $ R_t $, is a vital epidemic parameter utilized to judge whether an epidemic is shrinking, growing, or holding steady. The main goal of this paper is to estimate the combined $ R_t $ and time-dependent vaccination rate for COVID-19 in the USA and India after the vaccination campaign started. Accounting for the impact of vaccination into a discrete-time stochastic augmented SVEIR (Susceptible-Vaccinated-Exposed-Infectious-Recovered) model, we estimate the time-dependent effective reproduction number $ (R_t) $ and vaccination rate $ (\xi_t) $ for COVID-19 by using a low pass filter and the Extended Kalman Filter (EKF) approach for the period February 15, 2021 to August 22, 2022 in India and December 13, 2020 to August 16, 2022 in the USA. The estimated $ R_t $ and $ \xi_t $ show spikes and serrations with the data. Our forecasting scenario represents the situation by December 31, 2022 that the new daily cases and deaths are decreasing for the USA and India. We also noticed that for the current vaccination rate, $ R_t $ would remain greater than one by December 31, 2022. Our results are beneficial for the policymakers to track the status of the effective reproduction number, whether it is greater or less than one. As restrictions in these countries ease, it is still important to maintain safety and preventive measures.



    加载中


    [1] Q. Li, An outbreak of NCIP (2019-nCoV) infection in China - Wuhan, Hubei province, 2019–2020, China CDC Weekly, 2 (2020), 79.
    [2] Worldometer, Corornvirus Cases. Available from: https://www.worldometers.info/coronavirus/.
    [3] World Health Organization. Available from: https://covid19.who.int/region/searo/country/in.
    [4] S. Jamshidi, M. Baniasad, D. Niyogi, Global to USA county scale analysis of weather, urban density, mobility, homestay, and mask use on COVID-19, Int. J. Environ. Res. Public Health, 17 (2020), 7847. https://doi.org/10.3390/ijerph17217847 doi: 10.3390/ijerph17217847
    [5] D. Milošević, A. Middel, S. Savić, J. Dunjić, K. Lau, R. Stojsavljević, Mask wearing behavior in hot urban spaces of Novi Sad during the COVID-19 pandemic, Sci. Total Environ., 815 (2022), 152782. https://doi.org/10.1016/j.scitotenv.2021.152782 doi: 10.1016/j.scitotenv.2021.152782
    [6] X. Ma, X. F. Luo, L. Li, Y. Li, G.Q. Sun, The influence of mask use on the spread of COVID-19 during pandemic in New York City, Results Phys., 34 (2022), 105224. https://doi.org/10.1016/j.rinp.2022.105224 doi: 10.1016/j.rinp.2022.105224
    [7] J. K. Asamoah, E. Okyere, A. Abidemi, S. E. Moore, G. Q. Sun, Z. Jin, et al., Optimal control and comprehensive cost-effectiveness analysis for COVID-19, Results Phys., 33 (2022), 105177. https://doi.org/10.1016/j.rinp.2022.105177 doi: 10.1016/j.rinp.2022.105177
    [8] Our World in Data. Available from: https://ourworldindata.org/coronavirus.
    [9] M. Baniasad, M. G. Mofrad, B. Bahmanabadi, S. Jamshidi, COVID-19 in Asia: Transmission factors, re-opening policies, and vaccination simulation, Environ. Res., 202 (2021), 111657. https://doi.org/10.1016/j.envres.2021.111657 doi: 10.1016/j.envres.2021.111657
    [10] S. N. Zisad, M. S. Hossain, M. S. Hossain, K. Andersson, An integrated neural network and SEIR model to predict Covid-19, Algorithms, 14 (2021), 94. https://doi.org/10.3390/a14030094 doi: 10.3390/a14030094
    [11] P. L. Delamater, E. J. Street, T. F. Leslie, Y. T. Yang, K. H. Jacobsen, Complexity of the basic reproduction number ($R_0$), Emerg. Infect. Dis., 25 (2019), 1. https://doi.org/10.3201/eid2501.171901 doi: 10.3201/eid2501.171901
    [12] C. Fraser, Estimating individual and household reproduction numbers in an emerging epidemic, PloS One, 2 (2007), e758. https://doi.org/10.1371/journal.pone.0000758 doi: 10.1371/journal.pone.0000758
    [13] J. Wallinga, P. Teunis, Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures, Am. J. Epidemiol., 160 (2004), 509–516. https://doi.org/10.1093/aje/kwh255 doi: 10.1093/aje/kwh255
    [14] S. Cauchemez, P. Y. Boëlle, C. A. Donnelly, N. M. Ferguson, G. Thomas, G. M. Leung, et al., Real-time estimates in early detection of SARS, Emerg. Infect. Dis., 12 (2006), 110. https://doi.org/10.3201/eid1201.050593 doi: 10.3201/eid1201.050593
    [15] L. F. White, M. Pagano, Transmissibility of the influenza virus in the 1918 pandemic, PLoS One, 3 (2008), e1498. https://doi.org/10.1371/journal.pone.0001498 doi: 10.1371/journal.pone.0001498
    [16] B. Cazelles, C. Champagne, J. Dureau, Accounting for non-stationarity in epidemiology by embedding time-varying parameters in stochastic models, PLoS Comput. Biol., 14 (2018), e1006211. https://doi.org/10.1371/journal.pcbi.1006211 doi: 10.1371/journal.pcbi.1006211
    [17] H. Nishiura, G. Chowell, M. Safan, C. Castillo-Chavez, Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009, Theor. Biol. Medical Model., 7 (2010), 1–13. https://doi.org/10.1186/1742-4682-7-1 doi: 10.1186/1742-4682-7-1
    [18] L. M. Bettencourt, R. M. Ribeiro, Real time bayesian estimation of the epidemic potential of emerging infectious diseases, PloS One, 3 (2008), e2185. https://doi.org/10.1371/journal.pone.0002185 doi: 10.1371/journal.pone.0002185
    [19] M. Pollicott, H. Wang, H. Weiss, Extracting the time-dependent transmission rate from infection data via solution of an inverse ODE problem, J. Biol. Dyn., 6 (2012), 509–523. https://doi.org/10.1080/17513758.2011.645510 doi: 10.1080/17513758.2011.645510
    [20] J. D. Kong, C. Jin, H. Wang, The inverse method for a childhood infectious disease model with its application to pre-vaccination and post-vaccination measles data, Bull. Math. Biol., 77 (2015), 2231–2263. https://doi.org/10.1007/s11538-015-0121-5 doi: 10.1007/s11538-015-0121-5
    [21] X. Wang, H. Wang, P. Ramazi, K. Nah, M. Lewis, A hypothesis-free bridging of disease dynamics and non-pharmaceutical policies, Bull. Math. Biol., 84 (2022), 1–23. https://doi.org/10.1007/s11538-022-01012-8 doi: 10.1007/s11538-022-01012-8
    [22] X. Wang, H. Wang, P. Ramazi, K. Nah, M. Lewis, From policy to prediction: Forecasting COVID-19 dynamics under imperfect vaccination, Bull. Math. Biol., 84 (2022), 1–19. https://doi.org/10.1007/s11538-022-01047-x doi: 10.1007/s11538-022-01047-x
    [23] A. Hasan, H. Susanto, V. Tjahjono, R. Kusdiantara, E. Putri, N. Nuraini, et al., A new estimation method for COVID-19 time-varying reproduction number using active cases, Sci. Rep., 12 (2022), 1–9. https://doi.org/10.1038/s41598-022-10723-w doi: 10.1038/s41598-022-10723-w
    [24] N. Kumar, A. AbdulRahman, S. AlAli, S. Otoom, S. L. Atkin, M. AlQahtani, Time till viral clearance of severe acute respiratory syndrome coronavirus 2 is similar for asymptomatic and non-critically symptomatic individuals, Front. Med., 8 (2021), 616927. https://doi.org/10.3389/fmed.2021.616927 doi: 10.3389/fmed.2021.616927
    [25] T. Bhatnagar, S. Chaudhuri, M. Ponnaiah, P. D. Yadav, R. Sabarinathan, R. R. Sahay, et al., Effectiveness of BBV152/Covaxin and AZD1222/Covishield vaccines against severe COVID-19 and B. 1.617. 2/Delta variant in India, Int. J. Infect. Dis., 122 (2022), 693–702. https://doi.org/10.1016/j.ijid.2022.07.033 doi: 10.1016/j.ijid.2022.07.033
    [26] COVID-19: Vaccines. Available from: https://www.uptodate.com/contents/covid-19-vaccines#disclaimerContent.
    [27] H. Chemaitelly, P. Tang, M. R. Hasan, S. AlMukdad, H. M. Yassine, F. M. Benslimane, et al., Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar, N. Engl. J. Med., 385 (2021), e83. https://doi.org/10.1056/NEJMoa2114114 doi: 10.1056/NEJMoa2114114
    [28] O. Diekmann, J. A. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [29] C. Mitchell, C. Kribs, Invasion reproductive numbers for periodic epidemic models, Infect. Dis. Model., 4 (2019), 124–141. https://doi.org/10.1016/j.idm.2019.04.002 doi: 10.1016/j.idm.2019.04.002
    [30] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [31] C. Masreliez, R. Martin, Robust Bayesian estimation for the linear model and robustifying the Kalman filter, IEEE Trans. Automat. Contr., 22 (1977), 361–371. https://doi.org/10.1109/TAC.1977.1101538 doi: 10.1109/TAC.1977.1101538
    [32] M.M. Chowdhury, M.R. Islam, M.S. Hossain, N. Tabassum, A. Peace, Incorporating the mutational landscape of SARS-COV-2 variants and case-dependent vaccination rates into epidemic models, Infect. Dis. Model., 7 (2022), 75–82. https://doi.org/10.1016/j.idm.2022.02.003 doi: 10.1016/j.idm.2022.02.003
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1940) PDF downloads(119) Cited by(15)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog