In this paper, we introduce a new form of hybrid censoring sample, that is called COMBINED-UNIFIED (C-U) hybrid sample. In this unified approach, we merge the combined hybrid censoring sampling that considered by Huang and Yang [
Citation: Walid Emam, Khalaf S. Sultan. Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring[J]. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148
In this paper, we introduce a new form of hybrid censoring sample, that is called COMBINED-UNIFIED (C-U) hybrid sample. In this unified approach, we merge the combined hybrid censoring sampling that considered by Huang and Yang [
[1] | W. T. Huang, K. C. Yang, A new hybrid censoring scheme and some of its properties, Tam. Oxf. J. Math. Sci., 26 (2010), 355–367. |
[2] | N. Balakrishnan, A. Rasouli, N. S. Farsipour, Exact likelihood inference based on an unified hybrid censored sample from the exponential distribution, J. Stat. Comput. Simul., 78 (2013), 475–488. |
[3] | B. Epstein, Truncated life tests in the exponential case, Ann. Math. Stat., 25 (1954), 555–564. doi: 10.1214/aoms/1177728723 |
[4] | K. Fairbanks, R. Madson, R. Dykstra, A confidence interval for an exponential parameter from a hybrid life test, J. Amer. Stat. Assoc., 77 (1982), 137–140. doi: 10.1080/01621459.1982.10477776 |
[5] | N. Draper, I. Guttman, Bayesian analysis of hybrid life tests with exponential failure times, Ann. Inst. Stat. Math., 39 (1987), 219–225. doi: 10.1007/BF02491461 |
[6] | S. Chen, G. K. Bhattacharya, Exact confidence bounds for an exponential parameter under hybrid censoring, Comm. Stat. Theor. Meth., 17 (1988), 1857–1870. doi: 10.1080/03610928808829718 |
[7] | H. S. Jeong, J. I. Park, B. J. Yum, Development of $(r, T)$ hybrid sampling plans for exponential lifetime distributions, J. Appl. Stat., 23 (1996), 601–607. doi: 10.1080/02664769623964 |
[8] | A. Childs, B. Chandrasekhar, N. Balakrishnan, D. Kundu, Exact likelihood inference based on Type-Ⅰ and Type-Ⅱ hybrid censored samples from the exponential distribution, Ann. Inst. Stat. Math., 55 (2003), 319–330. |
[9] | R. D. Gupta, D. Kundu, On the comparison of Fisher information matrices of the Weibull and generalized exponential distributions. J. Stat. Plann. Infer., 136 (2006), 3130–3144. |
[10] | N. Balakrishnan, D. Kundu, Hybrid censoring: Models, inferential results and applications, Comput. Stat. Data Anal., 57 (2013), 166–209. doi: 10.1016/j.csda.2012.03.025 |
[11] | L. Wang, Y. M. Tripathi, C. Lodhi, Inference procedures for Weibull competing risks model with partially observed failure causes under generalized progressive hybrid censoring, J. Compu. Appl. Math., 368 (2020), 112537. doi: 10.1016/j.cam.2019.112537 |
[12] | Y. E. Jeon, S.-B. Kang, Estimation for the half-logistic distribution based on multiply Type-Ⅱ hybrid censoring, Phys. A, 550 (2020), 124501. doi: 10.1016/j.physa.2020.124501 |
[13] | M. Nassar, S. A. Dobbah, Analysis of reliability characteristics of bathtub-shaped distribution under adaptive Type-Ⅰ progressive hybrid censoring, IEEE Access, 8 (2020), 181796–181806. doi: 10.1109/ACCESS.2020.3029023 |
[14] | A. Algarni, A. Almarashi, G. A. Abd-Elmougoud, Joint Type-Ⅰ generalized hybrid censoring for estimation two Weibull distributions, J. Inf. Sci. Eng., 36 (2020), 1243–1260. |
[15] | C. Dagum, A model of income distribution and the conditions of existence of moments of finite order, Bull. Int. Stat. Inst., 46 (Proceedings of the 40th Session of the ISI, Warsaw, Contributed Papers) (1975), 199–205. |
[16] | C. Dagum, A new model of personal income distribution: Specification and estimation, Econ. Appl., 30 (1977), 413–437. |
[17] | C. Dagum, The generation and distribution of income, the Lorenz curve and the Gini ratio, Econom. Appliquf., 33 (1980), 327–367. |
[18] | C. Dagum, Generating systems and properties of income distribution models, Metron, 38 (1988), 3–26. |
[19] | C. Kleiber, S. Kotz, Statistical Size Distribution in Economics and Actuarial Sciences, John Wiley & Sons, Hoboken, NJ, 2003. |
[20] | C. Kleiber, A guide to the Dagum distribution, modeling income distributions and Lorenz curves economic studies in equality, Soc. Excl. Well-Being, 5 (2008), 97–117. |
[21] | C. Quintano, A. D'Agostino, Studying inequality in income distribution of singleperson households in four developed countries, Rev. Inc. Weal., 52 (2006), 525–546. doi: 10.1111/j.1475-4991.2006.00206.x |
[22] | F. Domma, S. Giordano, M. Zenga, The Fisher information matrix in doubly censored data from the Dagum distribution, Working Paper 8 (2009), Department of Economics and Statistics, University of Calabria, Italy. |
[23] | F. Domma, C. Latorre, M. Zenga, Reliability studies of the Dagum distribution, Working Paper 207 (2011), Department of Quantitative Methods for Economics and Business, University of Milan - Bicocca, Italy. |
[24] | F. Domma, L. Andamento, Della hazard function nel modello di Dagum a tre parametri, Quaderni di Statistica, 4 (2002), 103–114. |
[25] | D. Kundu, A. Joarder, Analysis of Type-Ⅱ progressively hybrid censored data, Comput. Stat. Data Anal., 50 (2006), 2509–2528. doi: 10.1016/j.csda.2005.05.002 |
[26] | M. Dube, R. Garg, H. Krishna, On progressively first failure censored Lindley distribution, Compu. Stat., 31 (2016), 139–163. doi: 10.1007/s00180-015-0622-6 |
[27] | E. K. AL-Hussaini, G. R. Al-Dayian, S. A. Adham, On finite mixture of two-component Gompertz lifetime model. J. Statist. Comput. Simul., 67 (2000), 1–20. |
[28] | L. Tierney, J. B. Kadane, Accurate approximations for posterior moments and marginal densities, J. Amer. Stat. Ass., 81 (1986), 82–86. doi: 10.1080/01621459.1986.10478240 |
[29] | M. D. Nicholas, W. J. Padgett, A bootstrap control chart for Weibull percentiles, Qual. Reliab. Eng. Int., 22 (2006), 141–151. doi: 10.1002/qre.691 |
[30] | S. Dey, B. Al-Zahrani, S. Basloom, Dagum distribution: Properties and different methods of estimation, Int. J. Stat. Prob., 6 (2017), 74–92. doi: 10.5539/ijsp.v6n2p74 |