Research article

Optimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains

  • Received: 26 January 2021 Accepted: 09 March 2021 Published: 29 March 2021
  • In this paper, we propose a dengue transmission model of SIR(S)-SI type that accounts for two sex-structured mosquito populations: the wild mosquitoes (males and females that are Wolbachia-free), and those deliberately infected with either wMel or wMelPop strain of Wolbachia. This epidemiological model has four possible outcomes: with or without Wolbachia and with or without dengue. To reach the desired outcome, with Wolbachia and without dengue, we employ the dynamic optimization approach and then design optimal programs for releasing Wolbachia-carrying male and female mosquitoes. Our discussion is focused on advantages and drawbacks of two Wolbachia strains, wMelPop and wMel, that are recommended for dengue prevention and control. On the one hand, the wMel strain guarantees a faster population replacement, ensures durable Wolbachia persistence in the wild mosquito population, and requiters fewer releases. On the other hand, the wMelPop strain displays better results for averting dengue infections in the human population.

    Citation: Daiver Cardona-Salgado, Doris Elena Campo-Duarte, Lilian Sofia Sepulveda-Salcedo, Olga Vasilieva, Mikhail Svinin. Optimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains[J]. Mathematical Biosciences and Engineering, 2021, 18(3): 2952-2990. doi: 10.3934/mbe.2021149

    Related Papers:

  • In this paper, we propose a dengue transmission model of SIR(S)-SI type that accounts for two sex-structured mosquito populations: the wild mosquitoes (males and females that are Wolbachia-free), and those deliberately infected with either wMel or wMelPop strain of Wolbachia. This epidemiological model has four possible outcomes: with or without Wolbachia and with or without dengue. To reach the desired outcome, with Wolbachia and without dengue, we employ the dynamic optimization approach and then design optimal programs for releasing Wolbachia-carrying male and female mosquitoes. Our discussion is focused on advantages and drawbacks of two Wolbachia strains, wMelPop and wMel, that are recommended for dengue prevention and control. On the one hand, the wMel strain guarantees a faster population replacement, ensures durable Wolbachia persistence in the wild mosquito population, and requiters fewer releases. On the other hand, the wMelPop strain displays better results for averting dengue infections in the human population.



    加载中


    [1] G. Bian, Y. Xu, P. Lu, Y. Xie, Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog., 6 (2010), e1000833. doi: 10.1371/journal.ppat.1000833
    [2] J. Kamtchum-Tatuene, B. Makepeace, L. Benjamin, M. Baylis, T. Solomon, The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections, Current Opin. Infect. Diseases, 30 (2017), 108. doi: 10.1097/QCO.0000000000000342
    [3] L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, et al., A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium, Cell, 139 (2009), 1268–1278. doi: 10.1016/j.cell.2009.11.042
    [4] T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450–453. doi: 10.1038/nature10355
    [5] I. Dorigatti, C. McCormack, G. Nedjati-Gilani, N. Ferguson, Using Wolbachia for dengue control: Insights from modelling, Trends Parasitol., 34 (2018), 102–113. doi: 10.1016/j.pt.2017.11.002
    [6] Scott A Ritchie, Michael Townsend, Chris J Paton, Ashley G Callahan, Ary A Hoffmann, Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti, PLoS Negl. Trop Dis., 9 (2015), e0003930. doi: 10.1371/journal.pntd.0003930
    [7] N. Ferguson, D. Kien, H. Clapham, R. Aguas, V. Trung, T. Chau, et al., Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci. Translat. Med., 7 (2015), 279ra37.
    [8] M. Woolfit, I. Iturbe-Ormaetxe, J. Brownlie, T. Walker, M. Riegler, A. Seleznev, et al., Genomic evolution of the pathogenic Wolbachia strain, wMelPop, Genome Biol. Evolut., 5 (2013), 2189–2204. doi: 10.1093/gbe/evt169
    [9] Doris E. Campo-Duarte, Olga Vasilieva, Daiver Cardona-Salgado, Mikhail Svinin, Optimal control methods for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations, J. Math. Biol., 76 (2018), 1907–1950. doi: 10.1007/s00285-018-1213-2
    [10] Daiver Cardona-Salgado, Doris E. Campo-Duarte, Lilian S. Sepulveda-Salcedo, Olga Vasilieva, Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach, Appl. Math. Model., 82 (2020), 125–149. doi: 10.1016/j.apm.2020.01.032
    [11] H. Hughes, N. Britton. Modelling the use of Wolbachia to control dengue fever transmission, Bullet. Math. Biol., 75 (2013), 796–818. doi: 10.1007/s11538-013-9835-4
    [12] Meksianis Ndii, Roslyn Hickson, David Allingham, G. N. Mercer. Modelling the transmission dynamics of dengue in the presence of Wolbachia, Math. Biosci., 262 (2015), 157–166. doi: 10.1016/j.mbs.2014.12.011
    [13] N. Bailey, The mathematical theory of infectious diseases and its applications, Charles Griffin & Company Ltd, Bucks, U.K., 1975.
    [14] Hal Caswell, Daniel E. Weeks. Two-sex models: Chaos, extinction, and other dynamic consequences of sex, Am. Natural., 128 (1986), 707–735. doi: 10.1086/284598
    [15] J. N. Liles, Effects of mating or association of the sexes on longevity in Aedes aegypti (L.), Mosquito News, 25 (1965), 434–439.
    [16] J. Werren, L. Baldo, M. Clark. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol., 6 (2008), 741.
    [17] L. Almeida, A. Haddon, C. Kermorvant, A. Léculier, Y. Privat, M. Strugarek, et al., Optimal release of mosquitoes to control dengue transmission, ESAIM Proceed. Surveys, 67 (2020), 16–29. doi: 10.1051/proc/202067002
    [18] J. Schraiber, A. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein, F. Rutaganira, et al., Constraints on the use of lifespan-shortening Wolbachia to control dengue fever, J. Theoret. Biol., 297 (2012), 26–32. doi: 10.1016/j.jtbi.2011.12.006
    [19] M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution, 64 (2010), 232–241. doi: 10.1111/j.1558-5646.2009.00822.x
    [20] L. Almeida, M. Duprez, Y. Privat, N. Vauchelet. Mosquito population control strategies for fighting against arboviruses, Math. Biosci. Eng., 16 (2019), 6274–6297. doi: 10.3934/mbe.2019313
    [21] L. Almeida, Y. Privat, M. Strugarek, N. Vauchelet. Optimal releases for population replacement strategies: Application to Wolbachia, SIAM J. Math. Anal., 51 (2019), 3170–3194. doi: 10.1137/18M1189841
    [22] P.-A. Bliman, M. S. Aronna, F. C. Coelho, Moacyr A. H. Da Silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, J. Math. Biol., 76 (2018), 1269–1300. doi: 10.1007/s00285-017-1174-x
    [23] Doris E. Campo-Duarte, Daiver Cardona-Salgado, Olga Vasilieva, Establishing wMelPop Wolbachia infection among wild Aedes aegypti females by optimal control approach, Appl. Math. Inform. Sci., 11 (2017), 1011–1027. doi: 10.18576/amis/110408
    [24] Dana Contreras-Julio, Pablo Aguirre, Jose Mujica, Olga Vasilieva. Finding strategies to regulate propagation and containment of dengue via invariant manifold analysis, SIAM J. Appl. Dynam. Systems, 19 (2020), 1392–1437. doi: 10.1137/20M131299X
    [25] Oscar E. Escobar-Lasso, Olga Vasilieva. A simplified monotone model of Wolbachia invasion encompassing Aedes aegypti mosquitoes, Studies Appl. Math., 146 (2021), 565–585. doi: 10.1111/sapm.12356
    [26] L. Xue, C. Manore, P. Thongsripong, J. Hyman. Two-sex mosquito model for the persistence of Wolbachia, J Biol. Dynam., 11 (2017), 216–237. doi: 10.1080/17513758.2016.1229051
    [27] N. Britton, Essential Mathematical Biology, Springer Undergraduate Mathematics Series. Springer, London, UK, 2012.
    [28] Lilian S. Sepúlveda, Olga Vasilieva. Optimal control approach to dengue reduction and prevention in Cali, Colombia, Math. Methods Appl. Sci., 39 (2016), 5475–5496. doi: 10.1002/mma.3932
    [29] E. Barrios, S. Lee, O. Vasilieva, Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia, J. Theor. Biol., 45 (2018), 14–39.
    [30] M. Grunnill, M. Boots. How important is vertical transmission of dengue viruses by mosquitoes (Diptera: Culicidae)? J. Med. Entomol., 53 (2015), 1–19.
    [31] J. Putnam, T. Scott. Blood-feeding behavior of dengue-2 virus-infected Aedes aegypti, Am. J. Trop. Med. Hyg., 52 (1995), 225–227. doi: 10.4269/ajtmh.1995.52.225
    [32] M.-J. Lau, N. Endersby-Harshman, J. Axford, S. Ritchie, A. Hoffmann, P. Ross, Measuring the host-seeking ability of Aedes aegypti destined for field release, Am. J. Trop. Med. Hyg., 102 (2020), 223–231. doi: 10.4269/ajtmh.19-0510
    [33] A. Turley, R. Smallegange, W. Takken, M. Zalucki, S. O'Neill, E. McGraw. Wolbachia infection does not alter attraction of the mosquito Aedes (stegomyia) aegypti to human odours, Med. Veter. Entomol., 28 (2014), 457–460. doi: 10.1111/mve.12063
    [34] M. Martcheva, An introduction to mathematical epidemiology, volume 61 of Texts in Applied Mathematics, Springer, New York, USA, 2015.
    [35] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6
    [36] D. Kroese, T. Taimre, Z. Botev. Handbook of Monte Carlo Methods, volume 706 of Wiley Series in Probability and Statistics, Wiley, 2011.
    [37] A. Lawson, Statistical Methods in Spatial Epidemiology, volume 657 of Wiley Series in Probability and Statistics, Wiley, 2nd edition edition, 2006.
    [38] W. Fleming, R. Rishel. Deterministic and stochastic optimal control, Springer, New York, USA, 1975.
    [39] S. Lenhart, J. Workman, Optimal control applied to biological models, Chapman & Hall/CRC, Boca Raton, FL, 2007.
    [40] M. Patterson, A. Rao, GPOPS-Ⅱ: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming, ACM Transact. Math. Software (TOMS), 41 (2014), 1.
    [41] Anil V Rao, David A Benson, Christopher Darby, Michael A Patterson, Camila Francolin, Ilyssa Sanders, et al., Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method, ACM Transact. Math. Software (TOMS), 37 (2010), 22.
    [42] D. Garg, M. Patterson, W. Hager, A. Rao, D. Benson, G. Huntington, A unified framework for the numerical solution of optimal control problems using pseudospectral methods, Automatica, 46 (2010), 1843–1851. doi: 10.1016/j.automatica.2010.06.048
    [43] F. Méndez, M. Barreto, J. Arias, G. Rengifo, J. Muñoz, M. Burbano, B. Parra, Human and mosquito infections by dengue viruses during and after epidemics in a dengue endemic region of Colombia. Am. J. Trop. Med. Hyg., 74 (2006), 678–683.
    [44] C. Ocampo, D. Wesson, Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia, Am. J. Trop. Med. Hyg., 71 (2004), 506–513. doi: 10.4269/ajtmh.2004.71.506
    [45] Lilian S. Sepulveda-Salcedo, Olga Vasilieva, Mikhail Svinin. Optimal control of dengue epidemic outbreaks under limited resources, Studies Appl. Math., 144 (2020), 185–212. doi: 10.1111/sapm.12295
    [46] G. Escobar-Morales, Cali en cifras 2010 [Cali in numbers 2010], Departamento Administrativo de Planeación. Alcaldia de Santiago de Cali, 2010.
    [47] WHO, World life expectancy: Colombia, https://www.worldlifeexpectancy.com/colombia-life-expectancy;, 2018. accessed on March 8, 2021.
    [48] P. Hancock, S. Sinkins, H. Godfray, Population dynamic models of the spread of Wolbachia. Am. Natural., 177 (2011), 323–333.
    [49] L. Styer, S. Minnick, A. Sun, T. Scott. Mortality and reproductive dynamics of Aedes aegypti (Diptera: Culicidae) fed human blood, Vector-borne Zoonot. Diseases, 7 (2007), 86–98. doi: 10.1089/vbz.2007.0216
    [50] R. Maciel-de Freitas, W. Marques, R. Peres, S. Cunha, R. Lourenço-de Oliveira, Variation in Aedes aegypti (Diptera: Culicidae) container productivity in a slum and a suburban district of Rio de Janeiro during dry and wet seasons, Memórias do Instituto Oswaldo Cruz, 102 (2007), 489–496.
    [51] I. Tovar-Zamora, J. Caraveo-Patiño, R. Penilla-Navarro, V. Serrano-Pinto, J. Méndez-Galván, A. Martínez, et al., Seasonal variation in abundance of dengue vector in the southern part of the Baja California Peninsula, Mexico, Southwestern Entomol., 44 (2019), 885–895. doi: 10.3958/059.044.0404
    [52] Juddy Heliana Arias-Castro, Hector Jairo Martinez-Romero, Olga Vasilieva, Biological and chemical control of mosquito population by optimal control approach, Games, 11 (2020), 62. doi: 10.3390/g11040062
    [53] Emilene Pliego-Pliego, Olga Vasilieva, Jorge Velázquez-Castro, Andres Fraguela-Collar, Control strategies for a population dynamics model of Aedes aegypti with seasonal variability and their effects on dengue incidence, Appl. Math. Model., 81 (2020), 296–319. doi: 10.1016/j.apm.2019.12.025
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2729) PDF downloads(179) Cited by(6)

Article outline

Figures and Tables

Figures(8)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog