Citation: Kimberlyn Roosa, Ruiyan Luo, Gerardo Chowell. Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4299-4313. doi: 10.3934/mbe.2019214
[1] | P. McCullagh and J. A. Nelder, Generalized linear models. Monographs on statistics and applied probability. London ; New York : Chapman and Hall, 1983., 1983. |
[2] | P. Yan and G. Chowell, Quantitative methods for investigating infectious disease outbreaks, Submitted for publication, 2019. |
[3] | R. Williams, Heteroskedasticity, 2015. |
[4] | C. Dean and E. Lundy, Overdispersion, 2014. In Wiley StatsRef: Statistics Reference Online. |
[5] | K. Roosa and G. Chowell, Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models, Theor. Biol. Med. Mod., 16 (2019), 1. |
[6] | B. Efron and R. Tibshirani, An introduction to the bootstrap. Monographs on statistics and applied probability: 57. New York: Chapman and Hall, c1993., 1993. |
[7] | G. Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts, Infect. Dis. Model., 2 (2017), 379–398. |
[8] | R. Anderson and R. May, Infectious Diseases of Humans: Dynamics and Control, New York ; Oxford University Press, 1991., 1991. |
[9] | O. Diekmann, J. A. Heesterbeek and J. A. Metz, On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. |
[10] | G. Chowell, C. Viboud, J. M. Hyman, et al., The western africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates, 2014. |
[11] | C. Viboud, L. Simonsen and G. Chowell, A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks, Epidemics, 15 (2016), 27–37. |
[12] | D. W. Shanafelt, G. Jones, M. Lima, et al., Forecasting the 2001 foot-and-mouth disease epidemic in the uk, ECOHEALTH, 15 (2018), 338–347. |
[13] | G. Chowell, D. Hincapie-Palacio, J. Ospina, et al., Using phenomenological models to characterize transmissibility and forecast patterns and final burden of zika epidemics, PLOS Currents Outbreaks, 2016. |
[14] | G. Chowell, H. Nishiura and L. M. A. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data, J. R. Soc. Interface, 4 (2007), 155–166. |
[15] | L. Dinh, G. Chowell and R. Rothenberg, Growth scaling for the early dynamics of hiv/aids epidemics in brazil and the influence of socio-demographic factors, J. Theor. Biol., 442 (2018), 79–86. |
[16] | B. Pell, Y. Kuang, C. Viboud, et al., Using phenomenological models for forecasting the 2015 ebola challenge, Epidemics, 22(The RAPIDD Ebola Forecasting Challenge), (2018), 62–70. |
[17] | T. Ganyani, K. Roosa, C. Faes, et al., Assessing the relationship between epidemic growth scaling and epidemic size: The 201416 ebola epidemic in west africa, Epidemiol. Infect., 147 (2018), e27. |
[18] | C. Z. Mooney, Monte Carlo Simulation. Sage University Paper series on Quantitiative Applications in the Social Sciences. Thousand Oaks, CA: Sage, 1997. |
[19] | I. J. Myung, Tutorial on maximum likelihood estimation, J. Math. Psychol., 47 (2003), 90. |
[20] | K. Kashin, Statistical inference: Maximum likelihood estimation, 2014. |