Citation: Rui-zhe Zheng, Jin Xing, Qiong Huang, Xi-tao Yang, Chang-yi Zhao, Xin-yuan Li. Integration of single-cell and bulk RNA sequencing data reveals key cell types and regulators in traumatic brain injury[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1201-1214. doi: 10.3934/mbe.2021065
[1] | M. H. Ahmad, M. Fatima, A. C. Mondal, Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of alzheimer's disease: rational insights for the therapeutic approaches, J. Clin. Neurosci., 59 (2018), 6–11. |
[2] | M. J. McGinn, J. T. Povlishock, Pathophysiology of Traumatic Brain Injury, Neurosurg. Clin. North Am., 27 (2016), 397–407. doi: 10.1016/j.nec.2016.06.002 |
[3] | V. Dinet, K. G. Petry, J. Badaut, Brain-immune interactions and neuroinflammation after traumatic brain injury, Front. Neurosci., 13 (2019), 1178. |
[4] | T. Maki, K. Hayakawa, L. Pham, C. Xing, E. H. Lo, K. Arai, Biphasic mechanisms of neurovascular unit injury and protection in CNS diseases, CNS Neurol. Disord.: Drug Targets, 12 (2013), 302–315. doi: 10.2174/1871527311312030004 |
[5] | I. P. Karve, J. M. Taylor, P. J. Crack, The contribution of astrocytes and microglia to traumatic brain injury, Br. J. Pharmacol., 173 (2016), 692–702. doi: 10.1111/bph.13125 |
[6] | A. D. Bachstetter, B. Xing, L. de Almeida, E. R. Dimayuga, D. M. Watterson, L. J. Van Eldik, Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ), J. Neuroinflammation, 8 (2011), 79. |
[7] | D. Younger, M. Murugan, K. V. Rama Rao, L. J. Wu, N. Chandra, Microglia Receptors in Animal Models of Traumatic Brain Injury, Mol. Neurobiol., 56 (2019), 5202–5228. doi: 10.1007/s12035-018-1428-7 |
[8] | W. Wang, L. S. Zhang, A. K. Zinsmaier, G. Patterson, E. J. Leptich, S. L. Shoemaker, et al., Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models, PLoS Biol., 17 (2019), e3000307. |
[9] | S. W. Barger, A. S. Basile, Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function, J. Neurochem., 76 (2010), 846–854. |
[10] | O. Thau-Zuchman, E. Shohami, A. G. Alexandrovich, R. R. Leker, Vascular endothelial growth factor increases neurogenesis after traumatic brain injury, J. Cereb. Blood Flow Metab., 30 (2010), 1008–1016. doi: 10.1038/jcbfm.2009.271 |
[11] | J. Zhang, M. Guan, Q. Wang, J. Zhang, T. Zhou, X. Sun, Single-cell transcriptome-based multilayer network biomarker for predicting prognosis and therapeutic response of gliomas, Briefings Bioinf., 21 (2020), 1080–1097. doi: 10.1093/bib/bbz040 |
[12] | J. Cheng, J. Zhang, Z. Wu, X. Sun, Inferring microenvironmental regulation of gene expression from single-cell RNA sequencing data using scMLnet with an application to COVID-19, Briefings Bioinf., 2020 (2020), 1–18. |
[13] | E. Armingol, A. Officer, O. Harismendy, N. E. Lewis, Deciphering cell-cell interactions and communication from gene expression, Nat. Rev. Genet., (2020) 2020, 1–18. |
[14] | W. N. Brandão, M. G. De Oliveira, R. T. Andreoni, H. Nakaya, A. S. Farias, J. P. S. Peron, Neuroinflammation at single cell level: What is new?, J. Leukocyte Biol., 108 (2020), 1129–1137. doi: 10.1002/JLB.3MR0620-035R |
[15] | A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Integrating single-cell transcriptomic data across different conditions, technologies, and species, Nat. Biotechnol., 36 (2018), 411–420. |
[16] | A. Bhattacherjee, M. N. Djekidel, R. Chen, W. Chen, L. M. Tuesta, Y. Zhang, Cell type-specific transcriptional programs in mouse prefrontal cortex during adolescence and addiction, Nat. Commun., 10 (2019), 4169. |
[17] | G. Yu, L. G. Wang, Y. Han, Q. Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS: J. Integr. Biol., 16 (2012), 284–287. doi: 10.1089/omi.2011.0118 |
[18] | J. A. Ramilowski, T. Goldberg, J. Harshbarger, E. Kloppmann, M. Lizio, V. P. Satagopam, et al., A draft network of ligand-receptor-mediated multicellular signalling in human, Nat. Commun., 6 (2015), 7866. |
[19] | J. Zhong, L. Jiang, C. Cheng, Z. Huang, H. Zhang, H. Liu, et al., Altered expression of long non-coding RNA and mRNA in mouse cortex after traumatic brain injury, Brain Res., 1646 (2016), 589–600. |
[20] | J. F. Zander, A. Münster-Wandowski, I. Brunk, I. Pahner, G. Gómez-Lira, U. Heinemann, et al., Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses, J. Neurosci., 30 (2010), 7634–7645. |
[21] | A. A. Almad, A. Doreswamy, S. K. Gross, J. P. Richard, Y. Huo, N. Haughey, et al., Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis, Glia, 64 (2016), 1154–1169. |
[22] | N. S. Mattan, C. A. Ghiani, M. Lloyd, R. Matalon, D. Bok, P. Casaccia, et al., Aspartoacylase deficiency affects early postnatal development of oligodendrocytes and myelination, Neurobiol. Dis., 40 (2010), 432–443. |
[23] | A. E. Cole, S. S. Murray, J. Xiao, Bone morphogenetic protein 4 signalling in neural stem and progenitor cells during development and after injury, Stem Cells Int., 2016 (2016), 9260592. |
[24] | M. I. Fonseca, S. H. Chu, M. X. Hernandez, M. J. Fang, L. Modarresi, P. Selvan, et al., Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain, J. Neuroinflammation, 14 (2017), 48. |
[25] | H. K. Lee, S. K. Chauhan, E. Kay, R. Dana, Flt-1 regulates vascular endothelial cell migration via a protein tyrosine kinase-7-dependent pathway, Blood, 117 (2011), 5762–5771. doi: 10.1182/blood-2010-09-306928 |
[26] | Y. Cao, K. S. Wilcox, C. E. Martin, T. L. Rachinsky, J. Eberwine, M. A. Dichter, Presence of mRNA for glutamic acid decarboxylase in both excitatory and inhibitory neurons, Proc. Natl. Acad. Sci., 93 (1996), 9844–9849. doi: 10.1073/pnas.93.18.9844 |
[27] | C. C. Chiu, Y. E. Liao, L. Y. Yang, J. Y. Wang, D. Tweedie, H. K. Karnati, et al., Neuroinflammation in animal models of traumatic brain injury, J. Neurosci. Methods, 272 (2016), 38–49. |
[28] | A. F. Ramlackhansingh, D. J. Brooks, R. J. Greenwood, S. K. Bose, F. E. Turkheimer, K. M. Kinnunen, et al., Inflammation after trauma: microglial activation and traumatic brain injury, Ann. Neurol., 70 (2011), 374–383. |
[29] | V. E. Johnson, J. E. Stewart, F. D. Begbie, J. Q. Trojanowski, D. H. Smith, W. Stewart, Inflammation and white matter degeneration persist for years after a single traumatic brain injury, Brain, 136 (2013), 28–42. doi: 10.1093/brain/aws322 |
[30] | A. I. Faden, J. Wu, B. A. Stoica, D. J. Loane, Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury, Br. J. Pharmacol., 173 (2016), 681–691. doi: 10.1111/bph.13179 |
[31] | G. W. Kreutzberg, Microglia: a sensor for pathological events in the CNS, Trends Neurosci., 19 (1996), 312–318. doi: 10.1016/0166-2236(96)10049-7 |
[32] | B. Linnartz-Gerlach, L. G. Bodea, C. Klaus, A. Ginolhac, R. Halder, L. Sinkkonen, et al., TREM2 triggers microglial density and age-related neuronal loss, Glia, 67 (2019), 539–550. |
[33] | K. von Kietzell, T. Pozzuto, R. Heilbronn, T. Grössl, H. Fechner, S. Weger, Antibody-mediated enhancement of parvovirus B19 uptake into endothelial cells mediated by a receptor for complement factor C1q, J. Virol., 88 (2014), 8102–8115. doi: 10.1128/JVI.00649-14 |
[34] | B. Ghebrehiwet, E. I. Peerschke, cC1q-R (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-ligand binding cellular proteins involved in inflammation and infection, Mol. Immunol., 41 (2004), 173–183. doi: 10.1016/j.molimm.2004.03.014 |
[35] | R. Lugano, K. Vemuri, D. Yu, M. Bergqvist, A. Smits, M. Essand, et al., CD93 promotes β 1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis, J. Clin. Invest., 128 (2018), 3280–3297. |
[36] | E. L. Castranio, A. Mounier, C. M. Wolfe, K. N. Nam, N. F. Fitz, F. Letronne, et al., Gene co-expression networks identify Trem2 and Tyrobp as major hubs in human APOE expressing mice following traumatic brain injury, Neurobiol. Dis., 105 (2017), 1–14. |
[37] | B. Zhang, C. Gaiteri, L. G. Bodea, Z. Wang, J. McElwee, A. A. Podtelezhnikov, et al., Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease, Cell, 153 (2013), 707–720. |
[38] | G. G. Turrigiano, The self-tuning neuron: synaptic scaling of excitatory synapses, Cell, 135 (2008), 422–435. doi: 10.1016/j.cell.2008.10.008 |