Citation: Jinhua Zeng, Xiulian Qiu, Shaopei Shi. Image processing effects on the deep face recognition system[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1187-1200. doi: 10.3934/mbe.2021064
[1] | U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, C. Busch, Face recognition systems under morphing attacks: A survey, IEEE Access, 7 (2019), 23012–23026. doi: 10.1109/ACCESS.2019.2899367 |
[2] | A. Fydanaki, Z. Geradts, Evaluating OpenFace: an open-source automatic facial comparison algorithm for forensics, Forensic Sci. Res., 3 (2018), 202–209. doi: 10.1080/20961790.2018.1523703 |
[3] | M. P. Evison, R. W. V. Bruegge, The magna database: A database of three-dimensional facial images for research in human identification and recognition, Forensic Sci. Commun., 10 (2008), 1–11. |
[4] | J. Zeng, S. Shi, Q. Lu, Y. Li, X. Qiu, Face recognition techniques for forensic identification of human images, Int. J. Digital Content Technol. Its Appl., 11 (2017), 34–43. |
[5] | J. Han, B. Bhanu, Individual recognition using gait energy image, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006), 316–322. doi: 10.1109/TPAMI.2006.38 |
[6] | S. Bharadwaj, H. Bhatt, M. Vatsa, R. Singh, A. Noore, Quality assessment based denoising to improve face recognition performance, CVPR 2011 WORKSHOPS, Colorado Springs, CO, 2011,140–145. |
[7] | A. A. Dawood, M. F. Saleh, Review of different techniques for image denoising, Int. J. Innovative Res. Comput. Commun. Eng., 6 (2018), 2498–2505. |
[8] | L. Fan, F. Zhang, H. Fan, C. Zhang, Brief review of image denoising techniques, Visual Comput. Ind. Biomed. Art, 2 (2019), 7. doi: 10.1186/s42492-019-0016-7 |
[9] | P. Janani, J. Premaladha, K. S. Ravichandran, Image enhancement techniques: A study, Indian J. Sci. Technol., 8 (2015), 125–145. doi: 10.17485/ijst/2015/v8iS6/71216 |
[10] | G. Deng, L. W. Cahill, An adaptive Gaussian filtering for noise reduction and edge detection, Nuclear Science Symposium and Medical Imaging Conference, 3 (1993), 1615–1619. |
[11] | X. Jia, S. Liu, X. Feng,, L. Zhang, FOCNet: A fractional optimal control network for image denoising, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. Available from: https://ieeexplore.ieee.org/document/8954104. |
[12] | C. Tian, Y. Xu, L. Fei, K. Yan, Deep learning for image denoising: a survey, International Conference on Genetic and Evolutionary Computing, 384 (2019), 563–572. |
[13] | C. Knaus, M. Zwicker, Progressive image denoising, IEEE Trans. Image Process., 23 (2014), 3114–3125. doi: 10.1109/TIP.2014.2326771 |
[14] | S. Cha, T. Moon, Fully convolutional pixel adaptive image denoiser, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, 4160–4169. |
[15] | J. Xu, L. Zhang, D. Zhang, A trilateral weighted sparse coding scheme for real-world image denoising, The European Conference on Computer Vision (ECCV), 2018, 20–36. |
[16] | R. Wang, X. Xiao, B. Guo, Q. Qin, R. Chen, An effective image denoising method for UAV images via improved generative adversarial networks, Sensors, 18 (2018), 1985. |
[17] | M. Diwakar, M. Kumar, A review on CT image noise and its denoising, Biomed. Signal Process. Control, 42 (2018), 73–88. doi: 10.1016/j.bspc.2018.01.010 |
[18] | J. Benesty, J. D. Chen, Y. T. Huang, Study of the widely linear wiener filter for noise reduction, IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, Texas, USA, 2010,205–208. |
[19] | S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern. Anal. Mach. Intell., 11 (1989), 674–693. doi: 10.1109/34.192463 |
[20] | W. Zhang, R. Li, K. He, J. Zhou, Approach to image denoising and enhancement based on 3DDCT, J. Univ. Electron. Sci. Technol. China, 40 (2011), 742–746. |
[21] | T. Yan, M. Qu, C. Zhou, Image denoising with BEMD and edge-preserving self-snake model, International Conference on Intelligent Computing, 8588 (2014), 435–442. |
[22] | K. Nguyen, C. Fookes, S. Sridharan, M. Tistarelli, M. Nixon, Super-resolution for biometrics: A comprehensive survey, Pattern Recognit., 78 (2018), 23–42. doi: 10.1016/j.patcog.2018.01.002 |
[23] | J. Jiang, J. Ma, C. Chen, X. Jiang, Z. Wang, Noise robust face image super-resolution through smooth sparse representation, IEEE Trans. Cybernetics, 47 (2016), 3991–4002. |
[24] | R. Tkachenko, P. Tkachenko, I. Izonin, Y. Tsymbal, Learning-based image scaling using neural-like structure of geometric transformation paradigm, in Advances in Soft Computing and Machine Learning in Image Processing, (2018), 537–565. |
[25] | I. Izonin, R. Tkachenko, D. Peleshko, T. Rak, D. Batyuk, Learning-based image super-resolution using weight coefficients of synaptic connections, 2015 Xth International Scientific and Technical Conference "Computer Sciences and Information Technologies" (CSIT), 2015, 25–29. |
[26] | Y. Rashkevych, D. Peleshko, O. Vynokurova, I. Izonin, N. Lotoshynska, Single-frame image super-resolution based on singular square matrix operator, 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering, 2017,944–948. |
[27] | M. Emambakhsh, J. Gao, A.N. Evans, An evaluation of denoising algorithms for 3D face recognition, 5th International Conference on Imaging for Crime Detection and Prevention, London, 2013. |
[28] | L. Zhang, L. Zhang, L. Li, Illumination quality assessment for face images: A benchmark and a convolutional neural networks based model, in International Conference on Neural Information Processing, Springer, Cham, 2017,583–593. |
[29] | N. Zhuang, Q. Zhang, C. Pan, B. Ni, Y. Xu, X. Yang, W. Zhang, Recognition oriented facial image quality assessment via deep convolutional neural network, Neurocomputing, 358 (2019), 109–118. doi: 10.1016/j.neucom.2019.04.057 |
[30] | J. Yu, K. Sun, F. Gao, S. Zhu, Face biometric quality assessment via light CNN, Pattern Recog. Lett., 107 (2018), 25–32. doi: 10.1016/j.patrec.2017.07.015 |
[31] | V. V. Starovoitov, D. I. Samal, D. V. Briliuk, Image enhancement for face recognition, International Conference on Iconics, St. Petersburg, Russia, 2003. |
[32] | T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002), 971–987. doi: 10.1109/TPAMI.2002.1017623 |
[33] | S. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Process., 9 (2000), 1532–1546. doi: 10.1109/83.862633 |
[34] | D. Andrews, C. Mallows, Scale mixtures of normal distributions, J. Royal Stat. Soc., 36 (1974), 99–102. |
[35] | A. Martinez, R. Benevento, The AR face database, CVC Technical Report #24, 1998. |
[36] | P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, et al., Overview of the face recognition grand challenge, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 1(2005), 947–954. doi: 10.1109/CVPR.2005.268 |
[37] | S. Mittal, S. Agarwal, M. J. Nigam, Real time multiple face recognition: A deep learning approach, Proceedings of the 2018 International Conference on Digital Medicine and Image Processing, 2018, 70–76. |
[38] | I. Masi, Y. Wu, T. Hassner, P. Natarajan, Deep face recognition: A survey, 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), 2018. Available from: https://ieeexplore.ieee.org/document/8614364. |
[39] | G. Gilboa, N. Sochen, Y. Y. Zeevi, Image enhancement and denoising by complex diffusion process, IEEE Trans. Patt. Anal. Mach. Intell., 26 (2004), 1020–1036. doi: 10.1109/TPAMI.2004.47 |
[40] | P. Perona, J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 629–639. doi: 10.1109/34.56205 |