Citation: Xu Zhang, Wei Huang, Jing Gao, Dapeng Wang, Changchuan Bai, Zhikui Chen. Deep sparse transfer learning for remote smart tongue diagnosis[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 1169-1186. doi: 10.3934/mbe.2021063
[1] | Z. Ning, P. Dong, X. Wang, X. Hu, L. Guo, B. Hu, et al., Mobile edge computing enabled 5G health monitoring for internet of medical things: A decentralized game theoretic approach, IEEE J. Sel. Areas Commun., (2020), 1–16. |
[2] | D. C. Mainenti, Big data and traditional chinese medicine (TCM): What's state of the art?, in 2019 IEEE International Conference on Big Data (Big Data), 2019, 1417–1422. |
[3] | Q. Jiang, X. Yang, X. Sun, An aided diagnosis model of sub-health based on rough set and fuzzy mathematics: A case of TCM, J. Intell. Fuzzy Syst., 32 (2017), 4135–4143. doi: 10.3233/JIFS-15958 |
[4] | F. Cui, Deployment and integration of smart sensors with iot devices detecting fire disasters in huge forest environment, Comput. Commun., 150 (2020), 818–827. doi: 10.1016/j.comcom.2019.11.051 |
[5] | P. H. O. Santos, G. L. Soares, T. M. Machado-Coelho, B. A. G. de Oliveira, P. Y. Ekel, F. M. F. Ferreira, et al., Multi-objective genetic algorithm implemented on a STM32F microcontroller, in 2018 IEEE Congress on Evolutionary Computation (CEC), 2018, 1–7. |
[6] | Z. Ning, P. Dong, X. Wang, X. Hu, J. Liu, L. Guo, et al., Partial computation offloading and adaptive task scheduling for 5G-enabled vehicular networks, IEEE Trans. Mob. Comput., (2020). |
[7] | Y. Huang, X. Ma, X. Fan, J. Liu, W. Gong, When deep learning meets edge computing, in 2017 IEEE 25th international conference on network protocols (ICNP), 2017, 1–2. |
[8] | Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, et al., Intelligent edge computing in internet of vehicles: a joint computation offloading and caching solution, IEEE Trans. Intell. Transp. Syst., (2020), 1–14. |
[9] | S. Vicente, J. Carreira, L. Agapito, J. Batista, Reconstructing pascal voc, in Proceedings of the IEEE conference on computer vision and pattern recognition, (2014), 41–48. |
[10] | Y. Zhang, B. D. Davison, Impact of imagenet model selection on domain adaptation, in Proceedings of the IEEE Winter Conference on Applications of Computer Vision Workshops, (2020), 173–182. |
[11] | S. M. Xie, N. Jean, M. Burke, D. B. Lobell, S. Ermon, Transfer learning from deep features for remote sensing and poverty mapping, in Proceedings of the AAAI Conference on Artificial Intelligence, 30 (2016). |
[12] | R. Xu, G. Li, J. Yang, L. Lin, Larger norm more transferable: An adaptive feature norm approach for unsupervised domain adaptation, in Proceedings of the IEEE International Conference on Computer Vision, (2019), 1426–1435. |
[13] | F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, K. Keutzer, SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size, preprint, arXiv: 1602.07360. |
[14] | A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, et al., Mobilenets: Efficient convolutional neural networks for mobile vision applications, preprint, arXiv: 1704.04861. |
[15] | J. Frankle, M. Carbin, The lottery ticket hypothesis: Finding sparse, trainable neural networks, preprint, arXiv: 1803.03635. |
[16] | G. Csurka, A comprehensive survey on domain adaptation for visual applications, in Domain adaptation in computer vision applications, Springer, Cham, (2017), 1–35. |
[17] | M. Wang, W. Deng, Deep visual domain adaptation: A survey, Neurocomputing, 312 (2018), 135–153. doi: 10.1016/j.neucom.2018.05.083 |
[18] | X. Huang, Y. Rao, H. Xie, T. Wong, F. L. Wang, Cross-domain sentiment classification via topic-related TrAdaBoost, in Proceedings of the AAAI Conference on Artificial Intelligence, 31 (2017). |
[19] | C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, C. Liu, A survey on deep transfer learning, in International conference on artificial neural networks, Springer, Cham, (2018), 270–279. |
[20] | H. Chang, J. Han, C. Zhong, A. Snijders, J. Mao, Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications, IEEE Trans. Pattern Anal. Mech. Intell., 40 (2017), 1182–1194. |
[21] | E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, T. Darrell, Deep domain confusion: Maximizing for domain invariance, preprint, arXiv: 1412.3474. |
[22] | M. Long, Y. Cao, J. Wang, M. I. Jordan, Learning transferable features with deep adaptation networks, in International conference on machine learning, PMLR, (2015), 97–105. |
[23] | B. Sun, K. Saenko, Deep coral: Correlation alignment for deep domain adaptation, in European conference on computer vision, Springer, Cham, (2016), 443–450. |
[24] | L. Zhang, X. Li, J. Lai, L. Zhang, Bioinformatics databases for network pharmacology research of traditional chinese medicine: A systematic review, in 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, (2017), 1400–1404. |
[25] | Y. Ye, B. Xu, L. Ma, J. Zhu, H. Shi, X. Cai, Research on treatment and medication rule of insomnia treated by TCM based on data mining, in 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, (2019), 2503–2508. |
[26] | K. Tago, H. Wang, Q. Jin, Classification of TCM pulse diagnoses based on pulse and periodic features from personal health data, in 2019 IEEE Global Communications Conference (GLOBECOM), IEEE, (2019), 1–6. |
[27] | J. Wei, J. Wang, Y. Zhu, J. Sun, H. Xu, M. Li, Traditional chinese medicine pharmacovigilance in signal detection: decision tree-based data classification, BMC Med. Inf. Decis. Making, 18 (2018), 19. doi: 10.1186/s12911-018-0599-5 |
[28] | C. Wu, T. Chen, Y. Hsieh, H. Tsao, A hybrid rule mining approach for cardiovascular disease detection in traditional chinese medicine, J. Intell. Fuzzy Syst., 36 (2019), 861–870. doi: 10.3233/JIFS-169864 |
[29] | Y. Li, H. Ye, An analysis and research of type-2 diabetes TCM records based on text mining, in 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), (2018), 1872–1875. |
[30] | J. Yang, Y. Wen, G. Zhao, J. Duan, Research on association rules of breast cancer and TCM : Syndrome based on data mining, in 2019 IEEE Symposium Series on Computational Intelligence (SSCI), (2019), 2788–2792. |
[31] | X. Li, Q. Shao, J. Wang, Classification of tongue coating using gabor and tamura features on unbalanced data set, in 2013 IEEE International Conference on Bioinformatics and Biomedicine, (2013), 108–109. |
[32] | J. Ding, G. Cao, D. Meng, Classification of tongue images based on doublet SVM, in 2016 International Symposium on System and Software Reliability (ISSSR), (2016), 77–81. |
[33] | Z. Qi, L. P. Tu, J. B. Chen, X. J. Hu, J. T. Xu, Z. F. Zhang, The classification of tongue colors with standardized acquisition and icc profile correction in traditional Chinese medicine, BioMed Res. Int., 2016 (2016). |
[34] | T. C. Lee, L. C. Lo, F. C. Wu, Traditional chinese medicine for metabolic syndrome via TCM pattern differentiation: tongue diagnosis for predictor, Evidence-Based Complementary Altern. Med., 2016 (2016). |
[35] | W. Liu, C. Zhou, Z. Li, Z. Hu, Patch-driven tongue image segmentation using sparse representation, IEEE Access, 8 (2020), 41372–41383. doi: 10.1109/ACCESS.2020.2976826 |
[36] | W. Jiao, X. Hu, L. Tu, C. Zhou, Z. Qi, Z. Luo, et al., Tongue color clustering and visual application based on 2D information, Int. J. Comput. Assist. Radiol. Surg., 15 (2020), 203–212. doi: 10.1007/s11548-019-02076-z |
[37] | W. Tang, Y. Gao, L. Liu, T. Xia, L. He, S. Zhang, et al., An automatic recognition of tooth-marked tongue based on tongue region detection and tongue landmark detection via deep learning, IEEE Access, 8 (2020), 153470–153478. doi: 10.1109/ACCESS.2020.3017725 |
[38] | S. Sadasivan, T. T. Sivakumar, A. P. Joseph, G. C. Zacharias, M. S. Nair, Tongue print identification using deep CNN for forensic analysis, J. Intell. Fuzzy Syst., 38 (2020), 6415–6422. doi: 10.3233/JIFS-179722 |
[39] | L. Li, Z. Luo, M. Zhang, Y. Cai, C. Li, S. Li, An iterative transfer learning framework for cross-domain tongue segmentation, Concurr. Comput. Pract., 32 (2020). |
[40] | H. Yang, J. Zhang, H. Dong, N. Inkawhich, A. Gardner, A. Touchet, et al., DVERGE: diversifying vulnerabilities for enhanced robust generation of ensembles, preprint, arXiv: 2009.14720. |