Research article Special Issues

Identification and validation of biomarkers for epithelial-mesenchymal transition-related cells to estimate the prognosis and immune microenvironment in primary gastric cancer by the integrated analysis of single-cell and bulk RNA sequencing data


  • Received: 08 April 2023 Revised: 08 May 2023 Accepted: 23 May 2023 Published: 16 June 2023
  • Background: The epithelial-mesenchymal transition (EMT) is associated with gastric cancer (GC) progression and immune microenvironment. To better understand the heterogeneity underlying EMT, we integrated single-cell RNA-sequencing (scRNA-seq) data and bulk sequencing data from GC patients to evaluate the prognostic utility of biomarkers for EMT-related cells (ERCs), namely, cancer-associated fibroblasts (CAFs) and epithelial cells (ECs). Methods: scRNA-seq data from primary GC tumor samples were obtained from the Gene Expression Omnibus (GEO) database to identify ERC marker genes. Bulk GC datasets from the Cancer Genome Atlas (TCGA) and GEO were used as training and validation sets, respectively. Differentially expressed markers were identified from the TCGA database. Univariate Cox, least-absolute shrinkage, and selection operator regression analyses were performed to identify EMT-related cell-prognostic genes (ERCPGs). Kaplan-Meier, Cox regression, and receiver-operating characteristic (ROC) curve analyses were adopted to evaluate the prognostic utility of the ERCPG signature. An ERCPG-based nomogram was constructed by integrating independent prognostic factors. Finally, we evaluated the correlations between the ERCPG signature and immune-cell infiltration and verified the expression of ERCPG prognostic signature genes by in vitro cellular assays. Results: The ERCPG signature was comprised of seven genes (COL4A1, F2R, MMP11, CAV1, VCAN, FKBP10, and APOD). Patients were divided into high- and low-risk groups based on the ERCPG risk scores. Patients in the high-risk group showed a poor prognosis. ROC and calibration curves suggested that the ERCPG signature and nomogram had a good prognostic utility. An immune cell-infiltration analysis suggested that the abnormal expression of ERCPGs induced the formation of an unfavorable tumor immune microenvironment. In vitro cellular assays showed that ERCPGs were more abundantly expressed in GC cell lines compared to normal gastric tissue cell lines. Conclusions: We constructed and validated an ERCPG signature using scRNA-seq and bulk sequencing data from ERCs of GC patients. Our findings support the estimation of patient prognosis and tumor treatment in future clinical practice.

    Citation: Kaiyu Shen, Shuaiyi Ke, Binyu Chen, Tiantian Zhang, Hongtai Wang, Jianhui Lv, Wencang Gao. Identification and validation of biomarkers for epithelial-mesenchymal transition-related cells to estimate the prognosis and immune microenvironment in primary gastric cancer by the integrated analysis of single-cell and bulk RNA sequencing data[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 13798-13823. doi: 10.3934/mbe.2023614

    Related Papers:

  • Background: The epithelial-mesenchymal transition (EMT) is associated with gastric cancer (GC) progression and immune microenvironment. To better understand the heterogeneity underlying EMT, we integrated single-cell RNA-sequencing (scRNA-seq) data and bulk sequencing data from GC patients to evaluate the prognostic utility of biomarkers for EMT-related cells (ERCs), namely, cancer-associated fibroblasts (CAFs) and epithelial cells (ECs). Methods: scRNA-seq data from primary GC tumor samples were obtained from the Gene Expression Omnibus (GEO) database to identify ERC marker genes. Bulk GC datasets from the Cancer Genome Atlas (TCGA) and GEO were used as training and validation sets, respectively. Differentially expressed markers were identified from the TCGA database. Univariate Cox, least-absolute shrinkage, and selection operator regression analyses were performed to identify EMT-related cell-prognostic genes (ERCPGs). Kaplan-Meier, Cox regression, and receiver-operating characteristic (ROC) curve analyses were adopted to evaluate the prognostic utility of the ERCPG signature. An ERCPG-based nomogram was constructed by integrating independent prognostic factors. Finally, we evaluated the correlations between the ERCPG signature and immune-cell infiltration and verified the expression of ERCPG prognostic signature genes by in vitro cellular assays. Results: The ERCPG signature was comprised of seven genes (COL4A1, F2R, MMP11, CAV1, VCAN, FKBP10, and APOD). Patients were divided into high- and low-risk groups based on the ERCPG risk scores. Patients in the high-risk group showed a poor prognosis. ROC and calibration curves suggested that the ERCPG signature and nomogram had a good prognostic utility. An immune cell-infiltration analysis suggested that the abnormal expression of ERCPGs induced the formation of an unfavorable tumor immune microenvironment. In vitro cellular assays showed that ERCPGs were more abundantly expressed in GC cell lines compared to normal gastric tissue cell lines. Conclusions: We constructed and validated an ERCPG signature using scRNA-seq and bulk sequencing data from ERCs of GC patients. Our findings support the estimation of patient prognosis and tumor treatment in future clinical practice.



    加载中


    [1] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: Cancer J. Clin., 71 (2021), 209–249. https://doi.org/10.3322/caac.21660 doi: 10.3322/caac.21660
    [2] M. Das, Neoadjuvant chemotherapy: survival benefit in gastric cancer, Lancet Oncol., 18 (2017), 307. https://doi.org/10.1016/s1470-2045(17)30321-2 doi: 10.1016/s1470-2045(17)30321-2
    [3] National Health Commission of the People's Republic of China, Chinese guidelines for diagnosis and treatment of gastric cancer 2018 (English version), Chin. J. Cancer Res., 31 (2019), 707–737. https://doi.org/10.21147/j.issn.1000-9604.2019.05.01
    [4] M. Orditura, G. Galizia, V. Sforza, V. Gambardella, A. Fabozzi, M. M. Laterza, et al., Treatment of gastric cancer, World J. Gastroenterol., 20 (2014), 1635–1649. https://doi.org/10.3748/wjg.v20.i7.1635 doi: 10.3748/wjg.v20.i7.1635
    [5] M. P. Lutz, J. R. Zalcberg, M. Ducreux, J. A. Ajani, W. Allum, D. Aust, et al., Highlights of the EORTC St. Gallen International Expert Consensus on the primary therapy of gastric, gastroesophageal and oesophageal cancer-Differential treatment strategies for subtypes of early gastroesophageal cancer, Eur. J. Cancer, 48 (2012), 2941–2953. https://doi.org/10.1016/j.ejca.2012.07.029 doi: 10.1016/j.ejca.2012.07.029
    [6] I. Thomassen, Y. R. van Gestel, B. van Ramshorst, M. D. Luyer, K. Bosscha, S. W. Nienhuijs, et al., Peritoneal carcinomatosis of gastric origin: A population-based study on incidence, survival and risk factors, Int. J. Cancer, 134 (2014), 622–628. https://doi.org/10.1002/ijc.28373 doi: 10.1002/ijc.28373
    [7] H. Nakagawa, M. Fujita, Whole genome sequencing analysis for cancer genomics and precision medicine, Cancer Sci., 109 (2018), 513–522. https://doi.org/10.1111/cas.13505 doi: 10.1111/cas.13505
    [8] A. Dongre, R. A. Weinberg, New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer, Nat. Rev. Mol. Cell. Biol., 20 (2019), 69–84. https://doi.org/10.1038/s41580-018-0080-4 doi: 10.1038/s41580-018-0080-4
    [9] M. Izumiya, A. Kabashima, H. Higuchi, T. Igarashi, G. Sakai, H. Iizuka, et al., Chemoresistance is associated with cancer stem cell-like properties and epithelial-to-mesenchymal transition in pancreatic cancer cells, Anticancer Res., 32 (2012), 3847–3853.
    [10] R. B. Hazan, R. Qiao, R. Keren, I. Badano, K. Suyama, Cadherin switch in tumor progression, Ann. N. Y. Acad. Sci., 1014 (2004), 155–163. https://doi.org/10.1196/annals.1294.016 doi: 10.1196/annals.1294.016
    [11] C. Cai, J. Yu, J. Wu, R. Lu, X. Ni, S. Wang, et al., CD133 promotes the invasion and metastasis of gastric cancer via epithelial-mesenchymal transition, Chin. J. Gastrointest. Surg., 16 (2013), 662–667.
    [12] C. Zeltz, I. Primac, P. Erusappan, J. Alam, A. Noel, D. Gullberg, Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins, Semin. Cancer Biol., 62 (2020), 166–181. https://doi.org/10.1016/j.semcancer.2019.08.004 doi: 10.1016/j.semcancer.2019.08.004
    [13] D. F. Quail, J. A. Joyce, Microenvironmental regulation of tumor progression and metastasis, Nat. Med., 19 (2013), 1423–1437. https://doi.org/10.1038/nm.3394 doi: 10.1038/nm.3394
    [14] N. Kemi, M. Eskuri, A. Herva, J. Leppanen, H. Huhta, O. Helminen, et al., Tumour-stroma ratio and prognosis in gastric adenocarcinoma, Br. J. Cancer, 119 (2018), 435–439. https://doi.org/10.1038/s41416-018-0202-y doi: 10.1038/s41416-018-0202-y
    [15] L. Huang, A. M. Xu, S. Liu, W. Liu, T. J. Li, Cancer-associated fibroblasts in digestive tumors, World. J. Gastroenterol., 20 (2014), 17804–17818. https://doi.org/10.3748/wjg.v20.i47.17804 doi: 10.3748/wjg.v20.i47.17804
    [16] A. C. Johansson, A. Ansell, F. Jerhammar, M. B. Lindh, R. Grenman, E. Munck-Wikland, et al., Cancer-associated fibroblasts induce matrix metalloproteinase–mediated cetuximab resistance in head and neck squamous cell carcinoma cells, Mol. Cancer Res., 10 (2012), 1158–1168. https://doi.org/10.1158/1541-7786.Mcr-12-0030 doi: 10.1158/1541-7786.Mcr-12-0030
    [17] R. A. Saito, P. Micke, J. Paulsson, M. Augsten, C. Pena, P. Jonsson, et al., Forkhead box F1 regulates tumor-promoting properties of cancer-associated fibroblasts in lung cancer, Cancer Res., 70 (2010), 2644–2654. https://doi.org/10.1158/0008-5472.Can-09-3644 doi: 10.1158/0008-5472.Can-09-3644
    [18] K. Pietras, K. Rubin, T. Sjoblom, E. Buchdunger, M. Sjoquist, C. Heldin, et al., Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy, Cancer Res., 62 (2002), 5476–5484.
    [19] X. Liu, K. M. Chu, E-Cadherin and gastric cancer: Cause, consequence, and applications, BioMed Res. Int., 2014 (2014), 637308. https://doi.org/10.1155/2014/637308 doi: 10.1155/2014/637308
    [20] S. Herbertz, J. S. Sawyer, A. J. Stauber, I. Gueorguieva, K. E. Driscoll, S. T. Estrem, et al., Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway, Drug Des., Dev. Ther., 9 (2015), 4479–4499. https://doi.org/10.2147/dddt.S86621 doi: 10.2147/dddt.S86621
    [21] M. Singh, N. Yelle, C. Venugopal, S. K. Singh, EMT: Mechanisms and therapeutic implications, Pharmacol. Ther., 182 (2018), 80–94. https://doi.org/10.1016/j.pharmthera.2017.08.009 doi: 10.1016/j.pharmthera.2017.08.009
    [22] X. Zhang, S. L. Marjani, Z. Hu, S. M. Weissman, X. Pan, S. Wu, Single-cell sequencing for precise cancer research: Progress and prospects, Cancer Res., 76 (2016), 1305–1312. https://doi.org/10.1158/0008-5472.Can-15-1907 doi: 10.1158/0008-5472.Can-15-1907
    [23] G. Sun, Z. Li, D. Rong, H. Zhang, X. Shi, W. Yang, et al., Single-cell RNA sequencing in cancer: Applications, advances, and emerging challenges, Mol. Ther Oncolytics., 21 (2021), 183–206. https://doi.org/10.1016/j.omto.2021.04.001 doi: 10.1016/j.omto.2021.04.001
    [24] A. Sathe, S. M. Grimes, B. T. Lau, J. Chen, C. Suarez, R. J. Huang, et al., Single-cell genomic characterization reveals the cellular reprogramming of the gastric tumor microenvironment, Clin. Cancer Res., 26 (2020), 2640–2653. https://doi.org/10.1158/1078-0432.Ccr-19-3231 doi: 10.1158/1078-0432.Ccr-19-3231
    [25] M. Zhang, S. Hu, M. Min, Y. Ni, Z. Lu, X. Sun, et al., Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing, Gut, 70 (2021), 464–475. https://doi.org/10.1136/gutjnl-2019-320368 doi: 10.1136/gutjnl-2019-320368
    [26] Y. Li, X. Hu, R. Lin, G. Zhou, L. Zhao, D. Zhao, et al., Single-cell landscape reveals active cell subtypes and their interaction in the tumor microenvironment of gastric cancer, Theranostics, 12 (2022), 3818–3833. https://doi.org/10.7150/thno.71833 doi: 10.7150/thno.71833
    [27] B. Wang, Y. Zhang, T. Qing, K. Xing, J. Li, T. Zhen, et al., Comprehensive analysis of metastatic gastric cancer tumour cells using single-cell RNA-seq, Sci. Rep., 11 (2021), 10. https://doi.org/10.1038/s41598-020-80881-2 doi: 10.1038/s41598-020-80881-2
    [28] A. C. Obenauf, J. Massague, Surviving at a distance: Organ-specific metastasis, Trends Cancer, 1 (2015), 76–91. https://doi.org/10.1016/j.trecan.2015.07.009 doi: 10.1016/j.trecan.2015.07.009
    [29] D. X. Nguyen, P. D. Bos, J. Massague, Metastasis: from dissemination to organ-specific colonization, Nat. Rev. Cancer, 9 (2009), 274–284. https://doi.org/10.1038/nrc2622 doi: 10.1038/nrc2622
    [30] X. Zhang, Y. Lan, J. Xu, F. Quan, E. Zhao, C. Deng, et al., CellMarker: a manually curated resource of cell markers in human and mouse, Nucleic. Acids. Res., 47 (2019), 721–728. https://doi.org/10.1093/nar/gky900 doi: 10.1093/nar/gky900
    [31] T. Yan, W. Qiu, J. Song, Y. Fan, Z. Yang, ARHGAP36 regulates proliferation and migration in papillary thyroid carcinoma cells, J. Mol. Endocrinol., 66 (2021), 1–10. https://doi.org/10.1530/jme-20-0230 doi: 10.1530/jme-20-0230
    [32] C. Han, T. Liu, R. Yin, Biomarkers for cancer-associated fibroblasts, Biomark. Res., 8 (2020). https://doi.org/10.1186/s40364-020-00245-w doi: 10.1186/s40364-020-00245-w
    [33] S. Togo, U. M. Polanska, Y. Horimoto, A. Orimo, Carcinoma-associated fibroblasts are a promising therapeutic target, Cancers, 5 (2013), 149–169. https://doi.org/10.3390/cancers5010149 doi: 10.3390/cancers5010149
    [34] G. Corso, J. Figueiredo, S. P. De Angelis, F. Corso, A. Girardi, J. Pereira, et al., E-cadherin deregulation in breast cancer, J. Cell. Mol. Med., 24 (2020), 5930–5936. https://doi.org/10.1111/jcmm.15140 doi: 10.1111/jcmm.15140
    [35] Y. A. Lyons, S. Y. Wu, W. W. Overwijk, K. A. Baggerly, A. K. Sood, Immune cell profiling in cancer: molecular approaches to cell-specific identification, npj Precision Onc., 1 (2017). https://doi.org/10.1038/s41698-017-0031-0 doi: 10.1038/s41698-017-0031-0
    [36] Z. Chen, Z. Han, H. Nan, J. Fan, J. Zhan, Y. Zhang, et al., A novel pyroptosis-related gene signature for predicting the prognosis and the associated immune infiltration in colon adenocarcinoma, Front. Oncol., 12 (2022). https://doi.org/10.3389/fonc.2022.904464 doi: 10.3389/fonc.2022.904464
    [37] S. Han, K. Huang, Z. Gu, J. Wu, Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy, Nanoscale, 12 (2020), 413–436. https://doi.org/10.1039/c9nr08086d doi: 10.1039/c9nr08086d
    [38] X. Geng, H. Chen, L. Zhao, J. Hu, W. Yang, G. Li, et al., Cancer-Associated Fibroblast (CAF) heterogeneity and targeting therapy of CAFs in pancreatic cancer, Front. Cell Dev. Biol., 9 (2021). https://doi.org/10.3389/fcell.2021.655152 doi: 10.3389/fcell.2021.655152
    [39] L. A. Aparicio, M. Blanco, R. Castosa, A. Concha, M. Valladares, L. Calvo, et al., Clinical implications of epithelial cell plasticity in cancer progression, Cancer Lett., 366 (2015), 1–10. https://doi.org/10.1016/j.canlet.2015.06.007 doi: 10.1016/j.canlet.2015.06.007
    [40] T. Baslan, J. Hicks, Unravelling biology and shifting paradigms in cancer with single-cell sequencing, Nat. Rev. Cancer, 17 (2017), 557–569. https://doi.org/10.1038/nrc.2017.58 doi: 10.1038/nrc.2017.58
    [41] Z. Zhang, S. Zheng, Y. Lin, J. Sun, N. Ding, J. Chen, et al., Genomics and prognosis analysis of epithelial-mesenchymal transition in colorectal cancer patients, BMC Cancer, 20 (2020). https://doi.org/10.1186/s12885-020-07615-5 doi: 10.1186/s12885-020-07615-5
    [42] C. Xiong, G. Wang, D. Bai, A novel prognostic models for identifying the risk of hepatocellular carcinoma based on epithelial-mesenchymal transition-associated genes, Bioengineered, 11 (2020), 1034–1046. https://doi.org/10.1080/21655979.2020.1822715 doi: 10.1080/21655979.2020.1822715
    [43] W. Dai, Y. Xiao, W. Tang, J. Li, L. Hong, J. Zhang, et al., Identification of an EMT-related gene signature for predicting overall survival in gastric cancer, Front. Genet., 12 (2021). https://doi.org/10.3389/fgene.2021.661306 doi: 10.3389/fgene.2021.661306
    [44] Y. Hu, Z. Hu, T. Liao, Y. Li, Y. Pan, LncRNA SND1-IT1 facilitates TGF-beta 1-induced epithelialto-mesenchymal transition via miR-124/COL4A1 axis in gastric cancer, Cell Death Discov., 8 (2022). https://doi.org/10.1038/s41420-021-00793-6 doi: 10.1038/s41420-021-00793-6
    [45] T. Wang, H. Jin, J. Hu, X. Li, H. Ruan, H. Xu, et al., COL4A1 promotes the growth and metastasis of hepatocellular carcinoma cells by activating FAK-Src signaling, J. Exp. Clin. Cancer Res., 39 (2020). https://doi.org/10.1186/s13046-020-01650-7 doi: 10.1186/s13046-020-01650-7
    [46] X. Xie, H. He, N. Zhang, X. Wang, W. Rui, D. Xu, et al., Overexpression of DDR1 promotes migration, invasion, though EMT-Related molecule expression and COL4A1/DDR1/MMP-2 signaling axis, Technol. Cancer Res. Treat., 19 (2020). https://doi.org/10.1177/1533033820973277 doi: 10.1177/1533033820973277
    [47] M. Miyake, Y. Morizawa, S. Hori, Y. Tatsumi, S. Onishi, T. Owari, et al., Diagnostic and prognostic role of urinary collagens in primary human bladder cancer, Cancer Sci., 108 (2017), 2221–2228. https://doi.org/10.1111/cas.13384 doi: 10.1111/cas.13384
    [48] Y. Zhang, X. Qu, C. Li, Y. Fan, X. Che, X. Wang, et al., miR-103/107 modulates multidrug resistance in human gastric carcinoma by downregulating Cav-1, Tumor Biol., 36 (2015), 2277–2285. https://doi.org/10.1007/s13277-014-2835-7 doi: 10.1007/s13277-014-2835-7
    [49] D. S. Sun, S. A. Hong, H. S. Won, S. H. Yoo, H. H. Lee, O. Kim, et al., Prognostic value of metastatic tumoral caveolin-1 expression in patients with resected gastric cancer, Gastroenterol. Res. Pract., 2017 (2017). https://doi.org/10.1155/2017/5905173 doi: 10.1155/2017/5905173
    [50] W. Liu, N. Yin, H. Liu, K. Nan, Cav-1 promote lung cancer cell proliferation and invasion through lncRNA HOTAIR, Gene, 641 (2018), 335–340. https://doi.org/10.1016/j.gene.2017.10.070 doi: 10.1016/j.gene.2017.10.070
    [51] D. Fujimoto, Y. Hirono, T. Goi, K. Katayama, S. Matsukawa, A. Yamaguchi, The activation of Proteinase-Activated Receptor-1 (PAR1) mediates gastric cancer cell proliferation and invasion, BMC Cancer, 10 (2010). https://doi.org/10.1186/1471-2407-10-443 doi: 10.1186/1471-2407-10-443
    [52] A. K. S. Arakaki, W. Pan, H. Wedegaertner, I. Roca-Mercado, L. Chinn, T. S. Gujral, et al., α-Arrestin ARRDC3 tumor suppressor function is linked to GPCR-induced TAZ activation and breast cancer metastasis, J. Cell Sci., 134 (2021). https://doi.org/10.1242/jcs.254888 doi: 10.1242/jcs.254888
    [53] N. Smoktunowicz, M. Plate, A. O. Stern, V. D. Antongiovanni, E. Robinson, V. Chudasama, et al., TGF beta upregulates PAR-1 expression and signalling responses in A549 lung adenocarcinoma cells, Oncotarget, 7 (2016), 65471–65484. https://doi.org/10.18632/oncotarget.11472 doi: 10.18632/oncotarget.11472
    [54] H. Deng, R. Guo, W. Li, M. Zhao, Y. Lu, Matrix metalloproteinase 11 depletion inhibits cell proliferation in gastric cancer cells, Biochem. Biophys. Res. Commun., 326 (2005), 274–281. https://doi.org/10.1016/j.bbrc.2004.11.027 doi: 10.1016/j.bbrc.2004.11.027
    [55] G. Xu, B. Zhang, J. Ye, S. Cao, J. Shi, Y. Zhao, et al., Exosomal miRNA-139 in cancer-associated fibroblasts inhibits gastric cancer progression by repressing MMP11 expression, Int. J. Biol. Sci., 15 (2019), 2320–2329. https://doi.org/10.7150/ijbs.33750 doi: 10.7150/ijbs.33750
    [56] H. B. Han, J. Gu, H. Zuo, Z. Chen, W. Zhao, M. Li, et al., Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer, J. Pathol., 226 (2012), 544–555. https://doi.org/10.1002/path.3014 doi: 10.1002/path.3014
    [57] Y. Zhuang, X. Li, P. Zhan, G. Pi, G. Wen, MMP11 promotes the proliferation and progression of breast cancer through stabilizing Smad2 protein, Oncol. Rep., 45 (2021). https://doi.org/10.3892/or.2021.7967 doi: 10.3892/or.2021.7967
    [58] L. Zhai, W. Chen, B. Cui, B. Yu, Y. Wang, H. Liu, Overexpressed versican promoted cell multiplication, migration and invasion in gastric cancer, Tissue Cell, 73 (2021). https://doi.org/10.1016/j.tice.2021.101611 doi: 10.1016/j.tice.2021.101611
    [59] S. P. Evanko, P. Y. Johnson, K. R. Braun, C. B. Underhill, J. Dudhia, T. N. Wight, Platelet-derived growth factor stimulates the formation of versican-hyaluronan aggregates and pericellular matrix expansion in arterial smooth muscle cells, Arch. Biochem. Biophys., 394 (2001), 29–38. https://doi.org/10.1006/abbi.2001.2507 doi: 10.1006/abbi.2001.2507
    [60] Y. Zhang, X. Zou, W. Qian, X. Weng, L. Zhang, L. Zhang, et al., Enhanced PAPSS2/VCAN sulfation axis is essential for Snail-mediated breast cancer cell migration and metastasis, Cell Death Differ., 26 (2019), 565–579. https://doi.org/10.1038/s41418-018-0147-y doi: 10.1038/s41418-018-0147-y
    [61] R. Wang, D. Zhang, C. Zhao, Q. Wang, H. Qu, Q. He, FKBP10 functioned as a cancer-promoting factor mediates cell proliferation, invasion, and migration via regulating PI3K signaling pathway in stomach adenocarcinoma, Kaohsiung J. Med. Sci., 36 (2020), 311–317. https://doi.org/10.1002/kjm2.12174 doi: 10.1002/kjm2.12174
    [62] G. Ramadori, R. M. Ioris, Z. Villanyi, R. Firnkes, O. O. Panasenko, G. Allen, et al., FKBP10 regulates protein translation to sustain lung cancer growth, Cell Rep., 30 (2020), 3851–3863. https://doi.org/10.1016/j.celrep.2020.02.082 doi: 10.1016/j.celrep.2020.02.082
    [63] H. Cai, M. Zhang, Z. Cheng, J. Yu, Q. Yuan, J. Zhang, et al., FKBP10 promotes proliferation of glioma cells via activating AKT-CREB-PCNA axis, J. Biomed. Sci., 28 (2021). https://doi.org/10.1186/s12929-020-00705-3 doi: 10.1186/s12929-020-00705-3
    [64] R. Murad, A. Avanes, X. Ma, S. Geng, A. Mortazavi, J. Momand, Transcriptome and chromatin landscape changes associated with trastuzumab resistance in HER2+breast cancer cells, Gene, 799 (2021), 145808. https://doi.org/10.1016/j.gene.2021.145808 doi: 10.1016/j.gene.2021.145808
    [65] S. Ashida, H. Nakagawa, T. Katagiri, M. Furihata, M. Iiizumi, Y. Anazawa, et al., Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs, Cancer Res., 64 (2004), 5963–5972. https://doi.org/10.1158/0008-5472.Can-04-0020 doi: 10.1158/0008-5472.Can-04-0020
    [66] J. Vazquez, L. Gonzalez, A. Merino, F. Vizoso, Expression and clinical significance of apolipoprotein D in epithelial ovarian carcinomas, Gynecol. Oncol., 76 (2000), 340–347. https://doi.org/10.1006/gyno.1999.5678 doi: 10.1006/gyno.1999.5678
    [67] J. Huo, L. Wu, Y. Zang, Construction and validation of a universal applicable prognostic signature for gastric cancer based on seven immune-related gene correlated with tumor associated macrophages, Front. Oncol., 11 (2021). https://doi.org/10.3389/fonc.2021.635324 doi: 10.3389/fonc.2021.635324
    [68] X. Guo, X. Liang, Y. Wang, A. Cheng, H. Zhang, C. Qin, et al., Significance of tumor mutation burden combined with immune infiltrates in the progression and prognosis of advanced gastric cancer, Front. Genet., 12 (2021). https://doi.org/10.3389/fgene.2021.642608 doi: 10.3389/fgene.2021.642608
    [69] Z. Peng, C. Wang, E. Fang, G. Wang, Q. Tong, Role of epithelial-mesenchymal transition in gastric cancer initiation and progression, World J. Gastroenterol., 20 (2014), 5403–5410. https://doi.org/10.3748/wjg.v20.i18.5403 doi: 10.3748/wjg.v20.i18.5403
    [70] W. Li, X. Zhang, F. Wu, Y. Zhou, Z. Bao, H. Li, et al., Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer, Cell Death Dis., 10 (2019). https://doi.org/10.1038/s41419-019-2131-y doi: 10.1038/s41419-019-2131-y
    [71] S. Su, Q. Liu, J. Chen, J. Chen, F. Chen, C. He, et al., A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis, Cancer Cell, 25 (2014), 605–620. https://doi.org/10.1016/j.ccr.2014.03.021 doi: 10.1016/j.ccr.2014.03.021
    [72] P. Xiao, X. Long, L. Zhang, Y. Ye, J. Guo, P. Liu, et al., Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of Tumor-Associated macrophages and epithelial-mesenchymal transition of hepatocellular carcinoma cells, OncoImmunology, 7 (2018). https://doi.org/10.1080/2162402x.2018.1440166 doi: 10.1080/2162402x.2018.1440166
    [73] M. C. A. Wouters, B. H. Nelson, Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer, Clin. Cancer Res., 24 (2018), 6125–6135. https://doi.org/10.1158/1078-0432.Ccr-18-1481 doi: 10.1158/1078-0432.Ccr-18-1481
    [74] C. Gu-Trantien, S. Loi, S. Garaud, C. Equeter, M. Libin, A. de Wind, et al., CD4(+) follicular helper T cell infiltration predicts breast cancer survival, J. Clin. lnvestigation, 123 (2013), 2873–2892. https://doi.org/10.1172/jci67428 doi: 10.1172/jci67428
    [75] G. R. Gunassekaran, S. M. P. Vadevoo, M. Baek, B. Lee, M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages, Biomaterials, 278 (2021), 121137. https://doi.org/10.1016/j.biomaterials.2021.121137 doi: 10.1016/j.biomaterials.2021.121137
  • mbe-20-08-614 supplementary.zip
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2753) PDF downloads(203) Cited by(0)

Article outline

Figures and Tables

Figures(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog