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Abstract: Background: The epithelial-mesenchymal transition (EMT) is associated with gastric cancer
(GC) progression and immune microenvironment. To better understand the heterogeneity underlying
EMT, we integrated single-cell RNA-sequencing (scRNA-seq) data and bulk sequencing data from
GC patients to evaluate the prognostic utility of biomarkers for EMT-related cells (ERCs), namely,
cancer-associated fibroblasts (CAFs) and epithelial cells (ECs). Methods: scRNA-seq data from
primary GC tumor samples were obtained from the Gene Expression Omnibus (GEO) database to
identify ERC marker genes. Bulk GC datasets from the Cancer Genome Atlas (TCGA) and GEO were
used as training and validation sets, respectively. Differentially expressed markers were identified from
the TCGA database. Univariate Cox, least-absolute shrinkage, and selection operator regression
analyses were performed to identify EMT-related cell-prognostic genes (ERCPGs). Kaplan-Meier,
Cox regression, and receiver-operating characteristic (ROC) curve analyses were adopted to evaluate
the prognostic utility of the ERCPG signature. An ERCPG-based nomogram was constructed by
integrating independent prognostic factors. Finally, we evaluated the correlations between the ERCPG
signature and immune-cell infiltration and verified the expression of ERCPG prognostic signature
genes by in vitro cellular assays. Results: The ERCPG signature was comprised of seven genes
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(COL4A1, F2R, MMPI11, CAV1, VCAN, FKBP10, and APOD). Patients were divided into high- and
low-risk groups based on the ERCPG risk scores. Patients in the high-risk group showed a poor
prognosis. ROC and calibration curves suggested that the ERCPG signature and nomogram had a good
prognostic utility. An immune cell-infiltration analysis suggested that the abnormal expression of
ERCPGs induced the formation of an unfavorable tumor immune microenvironment. In vitro cellular
assays showed that ERCPGs were more abundantly expressed in GC cell lines compared to normal
gastric tissue cell lines. Conclusions: We constructed and validated an ERCPG signature using scRNA-
seq and bulk sequencing data from ERCs of GC patients. Our findings support the estimation of patient
prognosis and tumor treatment in future clinical practice.
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1. Introduction

Gastric cancer (GC) is among the most common gastrointestinal malignancies worldwide and
originates from the epithelial cells (ECs) of the gastric mucosa. GC accounts for 12.4% of cancer-
related deaths in China and ranks fifth in incidence among all malignant tumors [1]. Surgical resection
remains the primary treatment for early-stage GC [2], and the widespread use of chemotherapy and
radiotherapy improves the prognosis and quality of life of postoperative patients and patients with
advanced-stage GC [3,4]. However, the high postoperative recurrence rate among patients with GC
and the low survival rate of patients with advanced-stage GC remain as major challenges for GC
treatment [5,6]. Hence, the effective prediction of prognosis is required to design treatment strategies with
greater clinical significance for patients.

Recent advancements in genome-sequencing technologies have ushered in a new era for tumor
diagnosis and prognosis evaluation, and biomarkers have now become an integral part of auxiliary
cancer diagnosis in clinical practice [7]. Further investigation into the mechanisms of action of GC-
related biomarkers is of great significance for determining the prognosis of patients with GC and
identifying effective therapeutic targets.

The epithelial-mesenchymal transition (EMT) is a reversible conversion of ECs into cells with a
mesenchymal phenotype that are involved in gastrulation, wound healing, and the development of
malignant tumors [8]. Extensive evidence suggests that the EMT process can accelerate tumor progression
and drug resistance [9] and is associated with the malignant biological behavior of GC cells [10,11].

As two types of key cells involved in EMT, cancer-associated fibroblasts (CAFs) and ECs play
important roles in the occurrence, proliferation, and invasion of most epithelium-derived malignant
tumors. The tumor microenvironment (TME) is a complex meshwork consisting of the extracellular matrix
(ECM) and cells, including CAFs, inflammatory cells, cellular components of blood vessels, and
mesenchymal stem cells [12]. The stromal component of tumors can affect tumor development [13]. CAFs
are important cellular components of the tumor stroma and can affect the tumor-stroma ratio (TSR).
Patients with GC and a high TSR had a more advanced tumor stage and experienced a shorter survival
period [14]. In addition, CAFs can promote angiogenesis and reshape the ECM by synthesizing soluble
molecules, such as vascular endothelial growth factor (VEGF), transforming growth factor-p (TGF-f),
matrix metalloproteinase (MMP), and ECM components, to induce EMT and create a
microenvironment conducive for tumor invasion [15-18]. In ECs, cell-cell junctions are disrupted by
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the loss of E-cadherin expression, with an upregulation of mesenchymal markers such as S100A4,
enabling ECs to acquire invasive and metastatic potential during EMT [8,19]. In contrast, therapies
targeting CAFs and EC-related biomarkers have shown positive antitumor efficacy. For example, the
TGF-p receptor kinase inhibitor galunisertib inhibited EMT in hepatocellular carcinoma cell lines [20].
Moreover, catumaxomab can target EpCAM, while ADH-1 can target N-cadherin [21].

The drawback of conventional RN A-sequencing technologies lies in the fact that they only reveal
the average gene-expression profile in studied tumor samples and cannot reflect the heterogeneity
within tumor cell populations. At present, the rapid development of single-cell RNA sequencing
(scRNA-seq) technologies has fueled research breakthroughs in biomedicine have previously not been
achieved using conventional sequencing techniques [22]. scRNA-seq technologies have been applied
in research on circulating tumor cells, the TME, and tumor drug resistance [23], enabling more accurate
analysis of genetic data in precision medicine. Sathe et al. [24] used scRNA-seq technology to compare
normal gastric tissues and GC cell subpopulations differences and revealed multiple cancer-promoting cell
subpopulations reprogramming process. The scRNA-seq technique has not only been applied to explore
the transcriptional heterogeneity of GCs with different degrees of differentiation [25], but also enriched
the understanding of the interaction between immune cells and stromal cells in the GC
immunosuppressive microenvironment [26]. In addition, scRNA-seq efficiently identifies novel GC
biomarkers. Wang et al. [27] identified GC lymph node metastasis-related biomarkers using scRNA-seq,
which provided new insights into the development of GC therapeutic targets.

In this study, we identified marker genes of EMT-related CAFs and ECs based on scRNA-seq
data from primary GC tumor samples, constructed a prognostic model by integrating the scRNA-seq
and bulk sequencing data from patients with GC, and used external data from the Gene Expression
Omnibus (GEO) database to validate the model. Finally, we verified the expression of ERCPGs by via
quantitative real-time PCR (qQRT-PCR) in vitro cells.

2. Materials and methods
2.1. Data acquisition

The scRNA-seq data of three primary GC tumor samples were obtained from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) (accession number: GSE163558). The dataset contained three
primary tumor samples, one paracancer tissue sample, and six metastatic tumor samples from different
tissues and organs. Our study aimed to explore the biological mechanisms of cell subpopulations
associated with primary GC; therefore, normal paracancer samples were not included. Considering
that there may be characteristics of cells and the TME different metastases [28,29] and to avoid
interference due to sample heterogeneity, we only included scRNA-seq data from three primary tumor
samples; the other six metastasis samples were excluded from our analysis. The transcriptome data
and clinical data of the TCGA-Stomach adenocarcinoma (STAD) cohort were downloaded from the
TCGA database (https://portal.gdc.cancer.gov/) and used as the bulk sequencing data. In this study, we
included 32 normal samples and 375 GC samples, among which 317 GC samples contained
transcriptome data and complete paired clinical data were used as the training set for subsequent
prognosis-related studies. The clinical data for the GC samples included age, sex, grade, and tumor
stage. The GSE15459 dataset (GEO database) contained 192 GC samples and was used as the external
validation set. The paired clinical data included sex, age, and tumor stage.
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2.2. scRNA-seq data analysis

The scRNA-seq data for the GC samples were converted into analyzable Seurat objects using the
CreatSeuratObject function in the “Seurat” package of the R software (v4.1.0). We used the “harmony”
package to remove the batch effect from the three primary GC samples. The proportion of
mitochondrial genes in each cell was determined using the “PercentageFeatureSet” function. During
the quality-control screening, high-quality genes and cells were selected using the “subset” function
based on the following criteria: 1) containing < 10% mitochondrial genes (parameter min.cells = 10), 2)
genes expressed in at least 10 cells (parameter percent.mt < 10), and 3) cells with genes expression > 200
(parameter nFeature RNA > 200). Subsequently, the “FindVariableFeatures” function was used to
identify highly variable genes. After the data were scaled using the “ScaleData” function, a principal
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) were performed
for dimensionality reduction, clustering, and visualization of the highly variable genes. The parameters
of the “FindAllMarkers” function were set up (min.pct = 0.3, logfc.threshold = 0.25) to identify the
marker genes of cell clusters. A heatmap was generated to identify the top five discriminative genes
per cluster. Based on the CellMarker database [30] and a review of previous studies [31-36], the
cellular clusters were annotated based on cell-specific marker genes. Finally, we identified the eligible
marker genes of ERCs based on |log2 (fold-change)| > 1 and adjusted P (adjPval) < 0.01 parameters.

2.3. Identifying Differentially Expressed Marker Genes (DEMGs) based on bulk data

The “limma” package of R was used to screen for differentially expressed genes (DEGs) in 32
normal samples and 375 GC samples with sequencing data deposited in the TCGA database (screening
criteria: [log2 (fold-change) > 1| and adjPval < 0.05). We performed set-intersection analysis using the
DEGs obtained from the bulk sequencing data of patients with GC and the ERC-marker genes to
identify the DEMGs. The “VennDiagram” package was used to plot the differentially expressed marker
genes (DEMGs).

2.4. Functional enrichment analysis

To explore the common characteristics of the DEMGs, we used the “org.Hs.eg.db” and
“clusterProfiler” packages of R to perform a gene ontology (GO) analysis with the “enrichGO”
function. The “enrichKEGG” function was used to perform a Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway-enrichment analyses (parameter organization = “hsa”, pvalueCutoft = 1,
qvalueCutoft = 1). A P value of < 0.05 indicated significant enrichment.

2.5. Constructing the ERCPG risk-scoring system and prognostic analysis

For the TCGA database, we used the “survival,” “survminer,” and “glmnet” packages of R. A
univariate Cox regression analysis was performed to preliminarily select DEMGs with a prognostic
significance. A least absolute shrinkage and selection operator (LASSO) analysis was performed based on
the optimal value of A to construct the ERCPG signature (“glmnet” function parameters were family =
“cox”, maxit=1000). The ERCPG risk score of each GC sample was calculated using Eq (1) as follows:

ERCPG Risk Score = Y|, ExG x LASSOcoef G (1)
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Here, ExG is the gene-expression level and LASSOcoef G is the regression coefficient. TCGA-
STAD training set and the GSE 15459 validation set were divided into two subgroups, namely the high-
risk and low-risk groups, based on the median values of the ERCPG risk scores. We used the R software
and the Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn/)
to perform a Kaplan-Meier (K-M) survival analysis of the ERCPG-based high- and low-risk groups
and the ERCPGs to investigate their correlations with the overall survival (OS) rate. Differences with
P values < 0.05 were considered statistically significant. Additionally, we performed multiple testing
corrections and calculated false discovery rate (FDR) values based on the “fdrtool” package. We also
explored the value of the ERCPG risk scores in predicting the survival and determining the prognosis
of patient subgroups with different clinical and prognostic characteristics. The “timeROC” package
was used to generate receiver operating characteristic (ROC) curves for the ERCPG risk scores using
TCGA-STAD training set and GSE15459 validation set. Univariate and multivariate Cox regression
analyses were performed to evaluate the ERCPG risk scores and clinical prognostic characteristics and
verify the independent prognostic significance of the ERCPG signature.

2.6. Constructing and evaluating the ERCPG nomogram

We used the “rms”, “regplot”, and “survival” packages to construct a prediction model for the
ERCPG signature. The “regplot” function was used to generate an ERCPG nomogram based on factors
with an independent prognostic significance in the TCGA-STAD training set to predict the 1, 3,
and 5-year OS rates. Calibration curves drawn using the “calibrate” function were used to evaluate the
prognostic utility of the ERCPG nomogram in TCGA-STAD training set and GSE15459 validation set,
using the following parameters: cmethod = “KM”, method = “boot.”

2.7. GSEA of ERCPG signature

To investigate the biological mechanisms related to ERCPG risk scores, we performed a Gene Set
Enrichment Analysis (GSEA) using the GSEA software (v4.1.0), with a permutation test parameter of 1000,
and gene set parameters of “h.all.v2022.1.Hs.symbols.gmt” and “c2.cp.kegg.v2022.1.Hs.symbols.gmt.”
P < 0.05 indicated significant enrichment. The “AUCell”, “clusterProfiler” and “ggplot2” packages were
used to present the GSEA results for different cell subpopulations.

2.8. Immune-cell infiltration analysis of ERCPG signature

Based on the “cibersort” and “limma” packages, we obtained the abundance of 22 immune cell
subtypes in GC. We applied the CIBERSORT algorithm to analyze the TCGA-STAD gene-expression
data and evaluate the infiltration levels of 22 types of immune cells in the ERCPG-based low- and high-
risk groups. We also evaluated the correlation between the seven ERCPGs and tumor immune cells using
the Tumor Immune Estimation Resource (TIMER) online tool (https://cistrome.shinyapps.io/timer/).

2.9. Cell culture

Normal gastric tissue cells (GES-1) and four GC cell lines (MKN-45, HGC-27, BGC-823, and
Hs-746T) were purchased from Hangzhou Freden Biotechnology Co. (Hangzhou, China). MKN-45,
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BGC-823, and Hs-746T cells were grown in RPMI-1640 medium, whereas GES-1 and HGC-27 cells
were grown in DMEM medium supplemented with 10% fetal bovine serum (FBS). Cells were
incubated at 37°C with 5% COa.

2.10. Quantitative real-time PCR (qRT-PCR)

To quantify the expression of the seven ERCPG signatures, Trizol reagent was used to extract the total
RNA from GES-1 and the remaining four GC cell lines according to the manufacturer’s protocol. qRT-
PCR was performed using the SYBR Premix Ex Taq according to the manufacturer’s protocol. Each set of
experiments was performed in triplicate. f-actin was used as an internal control. The expression level of
the ERCPG signature was quantified using the 2"2A“T method. The primers are as follows: B-actin, F 5’-
TGGCACCCAGCACAATGAA-3’, R 5’-CTAAGTCATAGTCCGCCTAGAAGCA-3’; COL4Al, F 5’-
ACCCCCGGGAGAAATAGGT-3’, R 5-GGATTTGAAAAAGCAATGGCACT-3’; F2R, F 5’-
TGCCTACCTCCTCTGTGTCTGTG-3’, R 5’-ACTGCTGGGATCGGAACTTTCTTTG-3’; MMP11, F
5’-GATCGACTTCGCCAGGTACT-3’, R 5’-CCCCGATAGTCCAGGTCTCA-3’; CAVI, F 5’-
TCTTCCAACACGTAGCTGCC-3’, R 5-CGGTGTAGAGATGTCCCTGCG-3’; VCAN, F 5’-
GCAAGTGATGCGGGTCTTTAC-3’, R 5-TTGCCGCCCTGTAGTGAAAC-3’; FKBP10 F 5°-
CATGGGCATGTGTGTCAACG-3’, R 5-GAATGAGCCCCGCCAGG-3’; and APOD, F 5’-
AATCGAAGGTGAAGCCACCC-3’, R 5’-GTGCCGATGGCATAAACCAG-3’.

2.11. Statistical analysis

All statistical analyses and graphing were performed using the R software. Univariate Cox and
LASSO regression analyses were performed to construct the ERCPG signature. The K-M method and the
log-rank test were adopted to calculate survival differences. An independent prognostic analysis was
performed based on the results of multivariate Cox analysis. Data were compared between multiple groups
using an analysis of variance (ANOVA). A Spearman’s correlation analysis was performed to
identify the correlations between ERCPGs and different types of immune cells. Statistical
significance was set at P < 0.05.

3. Results
3.1. scRNA-seq Analysis of GC samples

Data for three primary GC tumor samples containing 15,729 cells were obtained by downloading
the GSE163558 dataset. After a quality-control screening, 8,381 cells and 21,635 genes were identified
(Figure 1A). The correlation coefficient between the number of genes and depth of sequencing was 0.86,
suggesting a considerable positive correlation trend (Figure 1B). PCA analysis of the obtained 2,000
highly variable genes (Figure 1C) was performed (Figure 1D) to obtain 40 principal components (PC).
The t-SNE analysis was subsequently used to identify the top eight PC (p < 0.05) as 16 cell clusters
(Figure 1E), and the cell-cluster distribution of the three GC samples is shown in Figure 1F. Figure 1G
shows the proportion of cell clusters in the GC samples. The heatmap in Figure 1H shows the top five
cluster-discriminative genes for each of the 16 cell clusters. We calculated the specific marker genes in
each cell cluster (Table S1) and annotated the cell types with previous literature [31-36]. Cell cluster 0 was
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annotated as natural killer cells; cell clusters 1 and 11 were annotated as neutrophils; cell clusters 2
and 8 were annotated as regulatory T (Treg) cells; cell cluster 3 was annotated as CD4+ T cells; cell
clusters 4 and 13 were annotated as ECs; cell clusters 5 and 14 were annotated as B cells; cell clusters 6
and 10 were annotated as macrophages, cell cluster 12 was annotated as endothelial cells; cell
cluster 7 was annotated as T helper 17 (Th17) cells; cell cluster 9 was annotated as CAFs; and cell
cluster 15 was annotated as CD8+ T cells. The cell clusters annotation results are shown in Figure 11. We
identified 379 CAFs and 685 ECs. Finally, we excluded the genes that did not satisfy the criteria of |[log2
(fold-change) > 1| and adjPval < 0.01 and obtained 740 ERC marker genes (Table S2).
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Figure 1. Characterization of the scRNA-seq data from 15,729 cells. (A) Quality-control
analysis of the scRNA-seq data from GC cell samples. (B) Correlation between the number of
expressed genes and sequencing depth. (C) Variogram displaying 2,000 genes with highly
variable expression. (D) Preliminary classification of cells via PCA and identification of
significantly usable dimensions. (E) Identification of 16 clusters based on the t-SNE algorithm.
(F) Distribution of cell clusters from three primary GC tumor samples. (G) Proportional
distribution of cell clusters in GC samples. (H) Heatmap of the top five significantly DEMGs
for each cell cluster. (I) Annotated phenotype of each cell cluster.
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3.2. Identification of DEMGs

We performed a differential analysis of normal and tumor samples in the TCGA-STAD dataset
and obtained 718 DEGs, including 552 downregulated genes and 166 upregulated genes (Figure 2A)
(Table S3). We performed a set-intersection analysis of the 740 ERC-marker genes and 718 DEGs to
obtain 115 DEMGs for subsequent analysis (Figure 2B) (Table S4).
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Figure 2. Identification of DEMGs in TCGA-STAD cohort. (A) A heatmap of the
DEGs(Red represents up-regulated genes, blue represents down-regulated genes). (B)
DEMGs were obtained as the intersection of DEGs and ERC marker genes.

3.3. GO- and KEGG-based functional-enrichment analyses of DEMGs

A GO analysis indicated that the DEMGs were enriched for several terms associated with
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biological processes, including extracellular structure organization, focal adhesion, and a cellular
response to transforming the growth factor beta stimulus (Figure 3A). The KEGG pathway analysis
suggested that DEMGs were mainly enriched for signaling-pathway terms, including proteoglycans in
cancer, the PI3K-Akt signaling pathway, the TGF-f signaling pathway, the ECM-receptor interaction,
and signaling pathways regulating the pluripotency of stem cells (Figure 3B). Our results suggest that
DEMGs may promote the progression of GC through these pathways.
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Figure 3. Functional enrichment analyses of DEMGs. (A) GO analysis. (B) KEGG analysis.
3.4. Construction of ERCPG signature

A univariate Cox regression analysis was performed using the TCGA-STAD training set to
identify 30 cell-specific marker genes (P <0.05) (Figure 4A). A subsequent LASSO regression analysis
revealed the final ERCPG signature out of these 30 genes (Figure 4B). Seven ERCPGs were included
and the ERCPG-based risk score was calculated as follows: 0.0046959 Ex (COL4A1) + 0.0952825 Ex
(F2R) + 0.0715635 Ex (MMP11) + 0.0124528 Ex (CAV1) + 0.0619419 Ex (VCAN) + 0.0481557 Ex
(FKBP10) + 0.0524272 Ex (APOD).

All seven ERCPGs were identified as risk factors (hazard ratio [HR] > 1). The log-rank test and
K-M survival analysis were performed using the GEPIA database, and the results suggested that the
high expression of six ERCPGs (COL4Al, F2R, CAV1, VCAN, FKBP10, and APOD) significantly
correlated with a poor prognosis in patients with GC (P < 0.05) (Figure 4C). As can be seen from the
distribution of ERCPGs in cell clusters, COL4A1, F2R, MMP11, CAV1, VCAN, and FKBP10 were
distributed in CAF-related subpopulations (cell cluster 9), whereas APOD was mainly distributed in
EC-related subpopulations (cell cluster 13) (Figure 4D).
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Figure 4. Screening of marker genes, COL4A1, F2R, CAV1, VCAN, FKBP10, and APOD,
in the ERC subpopulation with prognostic significance. ERCPGs with prognostic
significance were identified by univariate Cox (A) and LASSO regression analyses (B).
(C) K-M analysis of ERCPGs. (D) Distribution of ERCPGs in cell clusters.
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3.5. Prognostic-utility analysis of ERCPG signature

We tested the prognostic utility of the ERCPG signature. The GSE15459 validation set and the
TCGA-STAD training set were divided into high- and low-risk groups based on the median values of
the ERCPG risk scores. The patients in the high-risk subgroup had a shorter OS time (Figure 5A, B).
The risk distribution and survival status of patients with GC are shown in Figure 5C and D. The area
under the ROC curve (AUC) values in patients in the TCGA-STAD training set were 0.636, 0.635,
and 0.787, after 1, 3, and 5-years, respectively (Figure 5E). The AUC values in the GSE15459
validation set were 0.688, 0.698, and 0.730, after 1, 3, and 5-years, respectively (Figure 5F).
Univariate Cox and multivariate Cox regression analyses were performed to evaluate the
prognostic value based on the TCGA-STAD training set, the ERCPG signature, and other clinical
data of patients with GC. Age (HR: 1.024 and 1.032; 95% confidence interval [CI]: 1.006—1.042
and 1.012-1.051; and P=0.010 and P = 0.001, respectively), staging (HR: 1.549 and 1.533; 95% CI:
1.244-1.929 and 1.066-2.164; and P <0.001 and P = 0.015, respectively), and risk scores (HR: 3.741
and 3.768; 95% CI: 2.048—6.835 and 1.999-7.105; and P <0.001 and P <0.001, respectively) were
independent risk factors for GC (Figure 6A, B). Cox analyses of the GSE15459 validation set
showed that staging (HR: 2.789 and 2.625; 95% CI: 2.140-3.635 and 1.992-3.459; and P < 0.001 and
P <0.001, respectively) and risk scores (HR: 3.351 and 3.800; 95% CI: 2.122—6.212 and 2.065-5.160;
and P <0.001 and P <0.001, respectively) had independent prognostic values (Figure 6 C, D).

We further analyzed the prognostic utility of the ERCPG risk scores in patient subgroups with
different clinical and prognostic characteristics. As shown in Figure 7, patients aged < 65 years (P=0.012,
FDR = 0.046), male patients (P = 0.010, FDR = 0.007), female patients (P = 0.028, FDR = 0.046),
patients with grade 3 GC (P = 0.040, FDR = 0.042), patients with stage III-IV GC (P = 0.007, FDR =
0.006), patients with T3-4 GC (P = 0.004, FDR = 0.005), patients with N1-3 GC (P = 0.003, FDR
=0.008), patients with MO GC (P =0.009, FDR = 0.007), and in the low-risk group survived longer
and had a better prognosis than those in the high-risk group. These results indicate that the ERCPG
signature can be used as an independent predictor of the prognosis of patients with GC.

3.6. Construction and validation of ERCPG nomogram

To improve the clinical utility of the ERCPG signature, we constructed an ERCPG nomogram
with the independent prognostic factors obtained from the multivariate Cox regression analysis of
the TCGA-STAD training set (Figure 8A). The generated 1, 3, and 5-year calibration curves
confirmed the accuracy of the ERCPG nomogram using both the TCGA-STAD training set and the
GSE15459 validation set (Figure 8B, C). Hence, our results suggest that the ERCPG nomogram
has a good clinical value.
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Figure 8. Construction and validation of the ERCPG nomogram. (A) Nomogram was
constructed based on age, staging, and grouping by using the ERCPG risk score. (B)
Calibration curves for the TCGA-STAD training set. (C) Calibration curves for the
GSE15459 validation set.

3.7. Correlations between ERCPG risk scores and associated signaling pathways

We analyzed the signaling pathways related to ERCPG risk scores using the TCGA-STAD training
set. Patients in the high-risk subgroup had a higher expression of genes that are closely associated with
several pathway terms, including cell adhesion molecules (CAMs), ECM receptor interaction, focal
adhesion, the Wnt signaling pathway, apical junction, the epithelial mesenchymal transition, and the
TGF-p signaling pathway (Figure 9A and B). ECM receptor interaction, focal adhesion, and EMT were
considerably enriched terms in the ERC subpopulation (cell clusters 4, 9 and 13) (Figure 9C). These
results indicate that the ERCPG signature could play a role in promoting GC invasion through CAFs
and ECs mediating the abovementioned pathways. Notably, the EMT signaling pathway was the most
enriched in the CAF subpopulation among the other cell subpopulations, suggesting that CAFs may
be a key cell subpopulation mediating the EMT signaling pathway in GC.
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3.8. Relationships Between ERCPGs and Immune-Cell Infiltration

Tumoral immune tolerance usually results from interactions between tumor-associated immune
cells and cancer cells [37]. Regulation of the TME by immune cells can greatly affect the efficacy of
cancer immunotherapy. Hence, we evaluated the relationship between ERCPG risk scores and immune-
cell infiltration. As shown in Figure 10, significantly higher M2 macrophage infiltration (P < 0.001) was
found in patients with GC with a high ERCPG risk score than in those with a low ERCPG risk score.
The infiltration levels of plasma cells (P = 0.013), activated memory CD4 T cells (P = 0.006), and M1
macrophages (P = 0.022) were higher in low-risk patients with GC than in high-risk patients. Analysis
of the seven ERCPGs and six types of immune cells in the TIMER database suggested that the
expression of ERCPGs was closely correlated with immune cells in GC (Figure 11). The seven
ERCPGs correlated significantly and positively with macrophages (P < 0.01).
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Figure 10. CIBERSORT algorithm-based investigation of the distribution of immune cells
in the low-ERCPG risk and high-ERCPG risk subgroups.

3.9. Expression of ERCPGs in GC cell lines

Based on normal gastric cell lines and GC cell lines, we verified the expression of the ERCPG
signature through in vitro experiments. A qRT-PCR analysis confirmed that COL4A1 was highly
expressed in HGC-27 and BGC-823, F2R, MMP11, CAV1, and VCAN were highly expressed in
MKN-45 and Hs-746T compared with GES-1. FKBP10 was expressed to a greater extent in all four
GC cell lines than in normal gastric mucosal cells. APOD was highly expressed in MKN-45, HGC-27,
and BGC-823 (Figure 12).
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Figure 12. Differential expression of ERCPG signature in normal gastric cell lines and GC
cell lines. (****:P <0.0001,***:P <0.001,**:P < 0.01,*:P <0.05)
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4. Discussion

Recently, the carcinogenic mechanism of EMT has been extensively investigated, and the roles of
CAFs and ECs in the development of human malignant tumors have attracted increasing attention. As
an important member of the stromal cell subpopulation in the TME, CAFs have inspired novel
approaches related to the current development of targeted drugs for cancer immunotherapy [38]. ECs
are particularly associated with the progression of epithelial malignancies induced by activation of the
EMT program owing to their ability to transform into cells with different phenotypes under different
cellular states [39]. Liu and Chu [19] reported that the E-cadherin expression of ECs may offer new
opportunities for GC diagnosis and treatment. However, the prognostic utility of CAF- and EC-related
biomarkers for patients with tumor remains not fully understood.

With the development of high-throughput sequencing technology, studies on malignant tumor
biomarkers using omics technologies have also emerged. In particular, the rise of scRNA-seq
technology compensates for the limitations of conventional high-throughput sequencing, providing an
effective tool for analyzing the biological behaviors of tumors [40]. Prognostic models for predicting
the OS of patients with cancer have been proposed based on bioinformatics investigations of EMT-
related biomarkers. Zhang et al. [41] used 11 EMT-related genes to construct a prognostic model of
colorectal cancer. EMT-related signals have also been applied to determine the prognosis of patients
with hepatic cancer [42]. Dai et al. [43] developed five EMT-related prognostic signals for GC. Unlike
these studies (which focused on conventional bulk sequencing data), this study performed an in-depth
analysis of two types of ERCs (CAFs and ECs) at the cell-subpopulation level based on scRNA-seq
data to identify prognostic biomarkers for GC.

To the best of our knowledge, this study was the first to analyze the characteristics of marker genes
for CAFs and ECs in GC and construct an ERCPG signature for predicting the OS of patients with GC.
First, we identified 740 marker genes for CAFs and ECs based on the scRNA-seq data from three
primary GC tumor samples and performed a set-intersection analysis of the marker genes and 718
DEGs from the bulk data to obtain 115 DEMGs. Then, we performed univariate Cox regression and
LASSO regression analyses to construct an ERCPG signature comprised of seven genes (COL4Al,
F2R, MMP11, CAV1, VCAN, FKBP10, and APOD). Patients with GC were divided into high- and
low-risk groups based on the ERCPG risk scores obtained using the TCGA-STAD training set and the
GSE15459 validation set. A K-M analysis suggested that patients in the high-risk group had a shorter
OS. In addition, the ERCPG risk scores remarkably distinguished between patients in the high-
and low-risk groups based on the following clinical characteristics: age < 65 years; sex; grade 3,
T3-4, N1-3, or MO GC; and stage III-IV GC. Univariate and multivariate Cox analyses results
suggested that the ERCPG risk scores were independent prognostic indicators. The ROC curves
showed a good prognostic value for the ERCPG signature in predicting the 1, 3, and 5-year survival
rates of patients with GC. Furthermore, to improve the efficiency of the ERCPG signature in predicting
the OS of patients with GC, we constructed an ERCPG nomogram using independent prognostic factors.
The calibration curves demonstrated good consistency between the predicted and actual values. Finally,
cellular assays confirmed that ERCPGs were expressed in higher abundance in GC cell lines than in normal
gastric cells.

We reviewed the literature regarding the seven ERCPGs. COL4A1 upregulation by IncRNA
SND1-IT1 and miR-124 in GC promoted the occurrence of EMT [44]. In hepatic cancer, COL4A1
upregulation by RUNXI1 facilitated the growth and invasion of tumor cells through the activation of
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FAK-Src signaling. COL4A1 overexpression contributed to a poor prognosis in patients with
hepatic cancer [45]. Moreover, COL4A1 was considerably upregulated in bladder cancer tissues,
and COL4A 1 produced by bladder cancer cells facilitated tumor budding and was suggestive of a poor
prognosis [46,47], which is consistent with our results.

CAV1 expression was regulated by miR-103/107 (miR-103 and miR-107) and closely associated
with multidrug resistance in GC [48]. In addition, CAV1 expression was upregulated in GC metastatic
lymph nodes, which were indicative of a poor prognosis in patients with GC [49]. CAV1 was
overexpressed in pulmonary cancer tissues, and its knockout in a non-small cell lung cancer cell line
(A549) impaired the proliferative and invasive capacities of tumor cells [50]. These findings on CAV1
are consistent with our results.

The activation of F2R (also known as PAR1) by agonists enhanced the proliferative and invasive
capacities of GC cells and induced the activation of other oncogenic factors, such as TN-C and NF-kB [51].
F2R can be overexpressed in triple-negative breast cancer due to the absence of ARRDC3 and can
promote tumor progression by regulating WWTR1 and activating Hippo signaling [52]. Moreover, an
elevated expression of F2R mediated by the TGFf signaling pathway was observed in A549 lung
cancer cells and might contribute to the EMT process [53]. Our results confirmed the malignant
biological behavior of F2R in malignant tumors.

Furthermore, the proliferative capacity of GC cells was considerably impaired by MMP11
silencing in the GC cell line BGC823 [54]. Another GC study on MMP11 showed that its negative
regulation by miR-139 suppressed GC progression [55]. Let-7¢ inhibited the growth and metastasis of
colon cancer by downregulating MMP11 [56]. Moreover, MMP11 was highly expressed in breast
cancer cells and clinical specimens, and its expression negatively correlated with the OS of patients
with breast cancer; MMP11 can enhance the structural stability of Smad2 in the TGFp signaling
pathway, hence promoting breast cancer progression [57]. These findings are consistent with our
findings on MMP11, indicating MMP11 as a potential therapeutic target for treating malignant tumors.

VCAN knockout in two GC cell lines (AGS and NCI-N87) remarkably inhibited the proliferation
and migration of tumor cells [58]. Platelet-derived growth factors can regulate VCAN expression and
thereby stimulate the proliferation of arterial smooth muscle cells; VCAN expression can promote
ECM expansion [59], which might be associated with tumor invasion and metastasis. Snail protein in
breast cancer cells mediated the overexpression of PAPSS2 and VCAN, subsequently disrupting ECM
homeostasis in the tumor stroma, triggering EMT, and ultimately facilitating the invasion and
metastasis of tumor cells [60]. Similarly, our results suggest that a high VCAN expression in patients
with GC is correlated with a shorter OS.

FKBP10 was upregulated in GC cell lines and may promote GC progression by mediating the
PI3K/AKT signaling pathway [61]. In contrast, its downregulation inhibited the progression of KRAS-
driven lung cancer, and its overexpression was dependent on PPIase activity during oncogenesis [62].
Moreover, FKBP10 was upregulated in gliomas, stimulating the growth of tumor cells by mediating
the AKT-CREB-PCNA signaling pathway [63]. Our results also suggest that low FKBP10 expression
is associated with a good OS in patients with GC.

APOD upregulation was observed in drug-resistant breast cancer cells [64]. Ashida et al. [65] found
that APOD was upregulated during the progression of invasive prostate cancer and was highly
expressed in prostate cancer cells. Additionally, Vazquez et al. [66] detected higher APOD expression
in ovarian cancer tissues than in normal ovaries. Interestingly, however, patients with ovarian cancer
with high APOD expression had a better prognosis than those with low APOD expression. Our results
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showed that the expression of APOD (a marker gene for ECs) in patients with GC was associated with
a poor prognosis. Other bioinformatics analyses of APOD in GC also showed that APOD expression was
a poor prognostic factor [67,68]; however, further relevant studies are still required to clarify its role in GC.

This is the first study to investigate biomarkers of ERCs using scRNA-seq data. We identified marker
genes for CAFs (COL4A1, F2R, MMP11, CAV1, VCAN, and FKBP10) and a marker gene for ECs
(APOD). Notably, the relationship between APOD and GC ECs is first reported in this study; further
fundamental studies are urgently required to confirm this correlation. Results from enrichment analyses
showed that 115 DEMGs were active in multiple pathways, including those related to focal adhesion, the
PI3K-Akt pathway, and ECM-receptor interactions. The high-risk subgroup was enriched in several terms,
including cell adhesion molecules (CAMs), TGF-f§ and Wnt signaling pathways, and cell-cluster graphs,
suggesting that these pathways were strongly activated in the CAF or EC subpopulations. The correlation
ofthe EMT with the PI3K-Akt and TGF-J3 signaling pathways in GC has been elucidated [69]. The ERCPG
signature may mediate tumor invasion and metastasis via these pathways.

In this study, we performed immune-cell infiltration analysis based on the ERCPG signature and
found that the infiltration level of M2 macrophages was elevated in high-risk patients with GC,
whereas that of plasma cells, activated memory CD4 T cells, and M1 macrophages were elevated in
low-risk patients with GC. The expression of all seven ERCPGs considerably and positively correlated
with the extent of macrophage infiltration. M2 macrophages sensitized by mesenchymal stromal cells
induced EMT in the GC TME [70]. Su et al. [71] suggested that breast cancer cells can secrete
granulocyte macrophage colony-stimulating factor during EMT to induce macrophage infiltration and
promote tumor metastasis. In addition, CCL18 derived from activated macrophages can induce EMT
progression. IL-8 produced by hepatic cancer cells promoted the proliferation of M2 macrophages and
facilitated the EMT program and tumor invasion [72].

Our results showed that all seven ERCPGs considerably and positively correlated with macrophage
levels and the abnormal expression of ERCPGs in the high-risk subgroup, which may have promoted
EMT by affecting the proliferation of M2 macrophages in GC, ultimately leading to a poor patient
prognosisa. Wouters et al. [73] reported that infiltration of plasma cells into tumor tissues was
indicative of a good prognosis, and the anti-tumor activity of activated memory T cells and M1
macrophages have been confirmed [74,75]. Hence, we deduced that the proliferation of plasma cells,
activated memory T cells, and M1 macrophages might exhibit anti-tumor activity in patients with GC
in the low-risk subgroup.

This study had some limitations. First, the scRNA-seq data and bulk data were obtained from
public databases. Thus, more clinicopathological data is needed to analyze the prognostic value of
ERCPGs. Future prospective studies should be conducted to confirm our results. In addition, more
basic studies are still needed to identify the relationship between ERCPGs and cell subpopulations and
their effects on the GC immune microenvironment.

5. Conclusions

We integrated scRNA-seq data from patients with GC with bulk sequencing data to construct an
EMT-related prognostic signature comprised of seven genes (COL4A1, F2R, MMP11, CAV1, VCAN,
FKBP10, and APOD) in TCGA-STAD training set. All seven ERCPGs were found to be closely related
with GC survival and were effectively validated in the GSE15459 validation set and in vitro cell
experiments. A functional enrichment analysis revealed that seven ERCPGs may promote GC
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progression through signaling pathways such as CAMs, ECM receptor interaction, focal adhesion, and
the Wnt signaling pathway. In addition, our findings lay a foundation for future research on the immune
microenvironment of GC.
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