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Abstract: Background: The epithelial-mesenchymal transition (EMT) is associated with gastric cancer 
(GC) progression and immune microenvironment. To better understand the heterogeneity underlying 
EMT, we integrated single-cell RNA-sequencing (scRNA-seq) data and bulk sequencing data from 
GC patients to evaluate the prognostic utility of biomarkers for EMT-related cells (ERCs), namely, 
cancer-associated fibroblasts (CAFs) and epithelial cells (ECs). Methods: scRNA-seq data from 
primary GC tumor samples were obtained from the Gene Expression Omnibus (GEO) database to 
identify ERC marker genes. Bulk GC datasets from the Cancer Genome Atlas (TCGA) and GEO were 
used as training and validation sets, respectively. Differentially expressed markers were identified from 
the TCGA database. Univariate Cox, least-absolute shrinkage, and selection operator regression 
analyses were performed to identify EMT-related cell-prognostic genes (ERCPGs). Kaplan-Meier, 
Cox regression, and receiver-operating characteristic (ROC) curve analyses were adopted to evaluate 
the prognostic utility of the ERCPG signature. An ERCPG-based nomogram was constructed by 
integrating independent prognostic factors. Finally, we evaluated the correlations between the ERCPG 
signature and immune-cell infiltration and verified the expression of ERCPG prognostic signature 
genes by in vitro cellular assays. Results: The ERCPG signature was comprised of seven genes 
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(COL4A1, F2R, MMP11, CAV1, VCAN, FKBP10, and APOD). Patients were divided into high- and 
low-risk groups based on the ERCPG risk scores. Patients in the high-risk group showed a poor 
prognosis. ROC and calibration curves suggested that the ERCPG signature and nomogram had a good 
prognostic utility. An immune cell-infiltration analysis suggested that the abnormal expression of 
ERCPGs induced the formation of an unfavorable tumor immune microenvironment. In vitro cellular 
assays showed that ERCPGs were more abundantly expressed in GC cell lines compared to normal 
gastric tissue cell lines. Conclusions: We constructed and validated an ERCPG signature using scRNA-
seq and bulk sequencing data from ERCs of GC patients. Our findings support the estimation of patient 
prognosis and tumor treatment in future clinical practice. 

Keywords: gastric cancer; biomarker; epithelial-mesenchymal transition; prognosis; bioinformatics 
 

1. Introduction 

Gastric cancer (GC) is among the most common gastrointestinal malignancies worldwide and 
originates from the epithelial cells (ECs) of the gastric mucosa. GC accounts for 12.4% of cancer-
related deaths in China and ranks fifth in incidence among all malignant tumors [1]. Surgical resection 
remains the primary treatment for early-stage GC [2], and the widespread use of chemotherapy and 
radiotherapy improves the prognosis and quality of life of postoperative patients and patients with 
advanced-stage GC [3,4]. However, the high postoperative recurrence rate among patients with GC 
and the low survival rate of patients with advanced-stage GC remain as major challenges for GC 
treatment [5,6]. Hence, the effective prediction of prognosis is required to design treatment strategies with 
greater clinical significance for patients. 

Recent advancements in genome-sequencing technologies have ushered in a new era for tumor 
diagnosis and prognosis evaluation, and biomarkers have now become an integral part of auxiliary 
cancer diagnosis in clinical practice [7]. Further investigation into the mechanisms of action of GC-
related biomarkers is of great significance for determining the prognosis of patients with GC and 
identifying effective therapeutic targets. 

The epithelial-mesenchymal transition (EMT) is a reversible conversion of ECs into cells with a 
mesenchymal phenotype that are involved in gastrulation, wound healing, and the development of 
malignant tumors [8]. Extensive evidence suggests that the EMT process can accelerate tumor progression 
and drug resistance [9] and is associated with the malignant biological behavior of GC cells [10,11]. 

As two types of key cells involved in EMT, cancer-associated fibroblasts (CAFs) and ECs play 
important roles in the occurrence, proliferation, and invasion of most epithelium-derived malignant 
tumors. The tumor microenvironment (TME) is a complex meshwork consisting of the extracellular matrix 
(ECM) and cells, including CAFs, inflammatory cells, cellular components of blood vessels, and 
mesenchymal stem cells [12]. The stromal component of tumors can affect tumor development [13]. CAFs 
are important cellular components of the tumor stroma and can affect the tumor-stroma ratio (TSR). 
Patients with GC and a high TSR had a more advanced tumor stage and experienced a shorter survival 
period [14]. In addition, CAFs can promote angiogenesis and reshape the ECM by synthesizing soluble 
molecules, such as vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), 
matrix metalloproteinase (MMP), and ECM components, to induce EMT and create a 
microenvironment conducive for tumor invasion [15–18]. In ECs, cell-cell junctions are disrupted by 
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the loss of E-cadherin expression, with an upregulation of mesenchymal markers such as S100A4, 
enabling ECs to acquire invasive and metastatic potential during EMT [8,19]. In contrast, therapies 
targeting CAFs and EC-related biomarkers have shown positive antitumor efficacy. For example, the 
TGF-β receptor kinase inhibitor galunisertib inhibited EMT in hepatocellular carcinoma cell lines [20]. 
Moreover, catumaxomab can target EpCAM, while ADH-1 can target N-cadherin [21]. 

The drawback of conventional RNA-sequencing technologies lies in the fact that they only reveal 
the average gene-expression profile in studied tumor samples and cannot reflect the heterogeneity 
within tumor cell populations. At present, the rapid development of single-cell RNA sequencing 
(scRNA-seq) technologies has fueled research breakthroughs in biomedicine have previously not been 
achieved using conventional sequencing techniques [22]. scRNA-seq technologies have been applied 
in research on circulating tumor cells, the TME, and tumor drug resistance [23], enabling more accurate 
analysis of genetic data in precision medicine. Sathe et al. [24] used scRNA-seq technology to compare 
normal gastric tissues and GC cell subpopulations differences and revealed multiple cancer-promoting cell 
subpopulations reprogramming process. The scRNA-seq technique has not only been applied to explore 
the transcriptional heterogeneity of GCs with different degrees of differentiation [25], but also enriched 
the understanding of the interaction between immune cells and stromal cells in the GC 
immunosuppressive microenvironment [26]. In addition, scRNA-seq efficiently identifies novel GC 
biomarkers. Wang et al. [27] identified GC lymph node metastasis-related biomarkers using scRNA-seq, 
which provided new insights into the development of GC therapeutic targets. 

In this study, we identified marker genes of EMT-related CAFs and ECs based on scRNA-seq 
data from primary GC tumor samples, constructed a prognostic model by integrating the scRNA-seq 
and bulk sequencing data from patients with GC, and used external data from the Gene Expression 
Omnibus (GEO) database to validate the model. Finally, we verified the expression of ERCPGs by via 
quantitative real-time PCR (qRT-PCR) in vitro cells. 

2. Materials and methods 

2.1. Data acquisition 

The scRNA-seq data of three primary GC tumor samples were obtained from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/) (accession number: GSE163558). The dataset contained three 
primary tumor samples, one paracancer tissue sample, and six metastatic tumor samples from different 
tissues and organs. Our study aimed to explore the biological mechanisms of cell subpopulations 
associated with primary GC; therefore, normal paracancer samples were not included. Considering 
that there may be characteristics of cells and the TME different metastases [28,29] and to avoid 
interference due to sample heterogeneity, we only included scRNA-seq data from three primary tumor 
samples; the other six metastasis samples were excluded from our analysis. The transcriptome data 
and clinical data of the TCGA-Stomach adenocarcinoma (STAD) cohort were downloaded from the 
TCGA database (https://portal.gdc.cancer.gov/) and used as the bulk sequencing data. In this study, we 
included 32 normal samples and 375 GC samples, among which 317 GC samples contained 
transcriptome data and complete paired clinical data were used as the training set for subsequent 
prognosis-related studies. The clinical data for the GC samples included age, sex, grade, and tumor 
stage. The GSE15459 dataset (GEO database) contained 192 GC samples and was used as the external 
validation set. The paired clinical data included sex, age, and tumor stage. 
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2.2. scRNA-seq data analysis 

The scRNA-seq data for the GC samples were converted into analyzable Seurat objects using the 
CreatSeuratObject function in the “Seurat” package of the R software (v4.1.0). We used the “harmony” 
package to remove the batch effect from the three primary GC samples. The proportion of 
mitochondrial genes in each cell was determined using the “PercentageFeatureSet” function. During 
the quality-control screening, high-quality genes and cells were selected using the “subset” function 
based on the following criteria: 1) containing < 10% mitochondrial genes (parameter min.cells = 10), 2) 
genes expressed in at least 10 cells (parameter percent.mt < 10), and 3) cells with genes expression > 200 
(parameter nFeature_RNA > 200). Subsequently, the “FindVariableFeatures” function was used to 
identify highly variable genes. After the data were scaled using the “ScaleData” function, a principal 
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) were performed 
for dimensionality reduction, clustering, and visualization of the highly variable genes. The parameters 
of the “FindAllMarkers” function were set up (min.pct = 0.3, logfc.threshold = 0.25) to identify the 
marker genes of cell clusters. A heatmap was generated to identify the top five discriminative genes 
per cluster. Based on the CellMarker database [30] and a review of previous studies [31–36], the 
cellular clusters were annotated based on cell-specific marker genes. Finally, we identified the eligible 
marker genes of ERCs based on |log2 (fold-change)| ≥ 1 and adjusted P (adjPval) < 0.01 parameters. 

2.3. Identifying Differentially Expressed Marker Genes (DEMGs) based on bulk data 

The “limma” package of R was used to screen for differentially expressed genes (DEGs) in 32 
normal samples and 375 GC samples with sequencing data deposited in the TCGA database (screening 
criteria: |log2 (fold-change) ≥ 1| and adjPval < 0.05). We performed set-intersection analysis using the 
DEGs obtained from the bulk sequencing data of patients with GC and the ERC-marker genes to 
identify the DEMGs. The “VennDiagram” package was used to plot the differentially expressed marker 
genes (DEMGs). 

2.4. Functional enrichment analysis 

To explore the common characteristics of the DEMGs, we used the “org.Hs.eg.db” and 
“clusterProfiler” packages of R to perform a gene ontology (GO) analysis with the “enrichGO” 
function. The “enrichKEGG” function was used to perform a Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway-enrichment analyses (parameter organization = “hsa”, pvalueCutoff = 1, 
qvalueCutoff = 1). A P value of < 0.05 indicated significant enrichment. 

2.5. Constructing the ERCPG risk-scoring system and prognostic analysis 

For the TCGA database, we used the “survival,” “survminer,” and “glmnet” packages of R. A 
univariate Cox regression analysis was performed to preliminarily select DEMGs with a prognostic 
significance. A least absolute shrinkage and selection operator (LASSO) analysis was performed based on 
the optimal value of λ to construct the ERCPG signature (“glmnet” function parameters were family = 
“cox”, maxit = 1000). The ERCPG risk score of each GC sample was calculated using Eq (1) as follows: 

 𝐸𝑅𝐶𝑃𝐺 𝑅𝑖𝑠𝑘 𝑆𝑐𝑜𝑟𝑒 ∑ 𝐸𝑥𝐺 ∗ 𝐿𝐴𝑆𝑆𝑂𝑐𝑜𝑒𝑓 𝐺  (1) 
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Here, ExG is the gene-expression level and LASSOcoef G is the regression coefficient. TCGA-
STAD training set and the GSE15459 validation set were divided into two subgroups, namely the high-
risk and low-risk groups, based on the median values of the ERCPG risk scores. We used the R software 
and the Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn/) 
to perform a Kaplan-Meier (K-M) survival analysis of the ERCPG-based high- and low-risk groups 
and the ERCPGs to investigate their correlations with the overall survival (OS) rate. Differences with 
P values < 0.05 were considered statistically significant. Additionally, we performed multiple testing 
corrections and calculated false discovery rate (FDR) values based on the “fdrtool” package. We also 
explored the value of the ERCPG risk scores in predicting the survival and determining the prognosis 
of patient subgroups with different clinical and prognostic characteristics. The “timeROC” package 
was used to generate receiver operating characteristic (ROC) curves for the ERCPG risk scores using 
TCGA-STAD training set and GSE15459 validation set. Univariate and multivariate Cox regression 
analyses were performed to evaluate the ERCPG risk scores and clinical prognostic characteristics and 
verify the independent prognostic significance of the ERCPG signature. 

2.6. Constructing and evaluating the ERCPG nomogram 

We used the “rms”, “regplot”, and “survival” packages to construct a prediction model for the 
ERCPG signature. The “regplot” function was used to generate an ERCPG nomogram based on factors 
with an independent prognostic significance in the TCGA-STAD training set to predict the 1, 3, 
and 5-year OS rates. Calibration curves drawn using the “calibrate” function were used to evaluate the 
prognostic utility of the ERCPG nomogram in TCGA-STAD training set and GSE15459 validation set, 
using the following parameters: cmethod = “KM”, method = “boot.” 

2.7. GSEA of ERCPG signature 

To investigate the biological mechanisms related to ERCPG risk scores, we performed a Gene Set 
Enrichment Analysis (GSEA) using the GSEA software (v4.1.0), with a permutation test parameter of 1000, 
and gene set parameters of “h.all.v2022.1.Hs.symbols.gmt” and “c2.cp.kegg.v2022.1.Hs.symbols.gmt.” 
P < 0.05 indicated significant enrichment. The “AUCell”, “clusterProfiler” and “ggplot2” packages were 
used to present the GSEA results for different cell subpopulations. 

2.8. Immune-cell infiltration analysis of ERCPG signature 

Based on the “cibersort” and “limma” packages, we obtained the abundance of 22 immune cell 
subtypes in GC. We applied the CIBERSORT algorithm to analyze the TCGA-STAD gene-expression 
data and evaluate the infiltration levels of 22 types of immune cells in the ERCPG-based low- and high-
risk groups. We also evaluated the correlation between the seven ERCPGs and tumor immune cells using 
the Tumor Immune Estimation Resource (TIMER) online tool (https://cistrome.shinyapps.io/timer/). 

2.9. Cell culture 

Normal gastric tissue cells (GES-1) and four GC cell lines (MKN-45, HGC-27, BGC-823, and 
Hs-746T) were purchased from Hangzhou Freden Biotechnology Co. (Hangzhou, China). MKN-45, 
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BGC-823, and Hs-746T cells were grown in RPMI-1640 medium, whereas GES-1 and HGC-27 cells 
were grown in DMEM medium supplemented with 10% fetal bovine serum (FBS). Cells were 
incubated at 37°C with 5% CO2. 

2.10. Quantitative real-time PCR (qRT-PCR) 

To quantify the expression of the seven ERCPG signatures, Trizol reagent was used to extract the total 
RNA from GES-1 and the remaining four GC cell lines according to the manufacturer’s protocol. qRT-
PCR was performed using the SYBR Premix Ex Taq according to the manufacturer’s protocol. Each set of 
experiments was performed in triplicate. β-actin was used as an internal control. The expression level of 
the ERCPG signature was quantified using the 2-ΔΔCT method. The primers are as follows: β-actin, F 5’-
TGGCACCCAGCACAATGAA-3’, R 5’-CTAAGTCATAGTCCGCCTAGAAGCA-3’; COL4A1, F 5’-
ACCCCCGGGAGAAATAGGT-3’, R 5’-GGATTTGAAAAAGCAATGGCACT-3’; F2R, F 5’-
TGCCTACCTCCTCTGTGTCTGTG-3’, R 5’-ACTGCTGGGATCGGAACTTTCTTTG-3’; MMP11, F 
5’-GATCGACTTCGCCAGGTACT-3’, R 5’-CCCCGATAGTCCAGGTCTCA-3’; CAV1, F 5’-
TCTTCCAACACGTAGCTGCC-3’, R 5’-CGGTGTAGAGATGTCCCTGCG-3’; VCAN, F 5’-
GCAAGTGATGCGGGTCTTTAC-3’, R 5’-TTGCCGCCCTGTAGTGAAAC-3’; FKBP10 F 5’- 
CATGGGCATGTGTGTCAACG-3’, R 5’-GAATGAGCCCCGCCAGG-3’; and APOD, F 5’-
AATCGAAGGTGAAGCCACCC-3’, R 5’-GTGCCGATGGCATAAACCAG-3’. 

2.11. Statistical analysis 

All statistical analyses and graphing were performed using the R software. Univariate Cox and 
LASSO regression analyses were performed to construct the ERCPG signature. The K-M method and the 
log-rank test were adopted to calculate survival differences. An independent prognostic analysis was 
performed based on the results of multivariate Cox analysis. Data were compared between multiple groups 
using an analysis of variance (ANOVA). A Spearman’s correlation analysis was performed to 
identify the correlations between ERCPGs and different types of immune cells. Statistical 
significance was set at P < 0.05. 

3. Results 

3.1. scRNA-seq Analysis of GC samples 

Data for three primary GC tumor samples containing 15,729 cells were obtained by downloading 
the GSE163558 dataset. After a quality-control screening, 8,381 cells and 21,635 genes were identified 
(Figure 1A). The correlation coefficient between the number of genes and depth of sequencing was 0.86, 
suggesting a considerable positive correlation trend (Figure 1B). PCA analysis of the obtained 2,000 
highly variable genes (Figure 1C) was performed (Figure 1D) to obtain 40 principal components (PC). 
The t-SNE analysis was subsequently used to identify the top eight PC (p < 0.05) as 16 cell clusters 
(Figure 1E), and the cell-cluster distribution of the three GC samples is shown in Figure 1F. Figure 1G 
shows the proportion of cell clusters in the GC samples. The heatmap in Figure 1H shows the top five 
cluster-discriminative genes for each of the 16 cell clusters. We calculated the specific marker genes in 
each cell cluster (Table S1) and annotated the cell types with previous literature [31–36]. Cell cluster 0 was 
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annotated as natural killer cells; cell clusters 1 and 11 were annotated as neutrophils; cell clusters 2 
and 8 were annotated as regulatory T (Treg) cells; cell cluster 3 was annotated as CD4+ T cells; cell 
clusters 4 and 13 were annotated as ECs; cell clusters 5 and 14 were annotated as B cells; cell clusters 6 
and 10 were annotated as macrophages, cell cluster 12 was annotated as endothelial cells; cell 
cluster 7 was annotated as T helper 17 (Th17) cells; cell cluster 9 was annotated as CAFs; and cell 
cluster 15 was annotated as CD8+ T cells. The cell clusters annotation results are shown in Figure 1I. We 
identified 379 CAFs and 685 ECs. Finally, we excluded the genes that did not satisfy the criteria of |log2 
(fold-change) ≥ 1| and adjPval < 0.01 and obtained 740 ERC marker genes (Table S2). 

 

Figure 1. Characterization of the scRNA-seq data from 15,729 cells. (A) Quality-control 
analysis of the scRNA-seq data from GC cell samples. (B) Correlation between the number of 
expressed genes and sequencing depth. (C) Variogram displaying 2,000 genes with highly 
variable expression. (D) Preliminary classification of cells via PCA and identification of 
significantly usable dimensions. (E) Identification of 16 clusters based on the t-SNE algorithm. 
(F) Distribution of cell clusters from three primary GC tumor samples. (G) Proportional 
distribution of cell clusters in GC samples. (H) Heatmap of the top five significantly DEMGs 
for each cell cluster. (I) Annotated phenotype of each cell cluster. 
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3.2. Identification of DEMGs 

We performed a differential analysis of normal and tumor samples in the TCGA-STAD dataset 
and obtained 718 DEGs, including 552 downregulated genes and 166 upregulated genes (Figure 2A) 
(Table S3). We performed a set-intersection analysis of the 740 ERC-marker genes and 718 DEGs to 
obtain 115 DEMGs for subsequent analysis (Figure 2B) (Table S4). 

 

 

Figure 2. Identification of DEMGs in TCGA-STAD cohort. (A) A heatmap of the 
DEGs(Red represents up-regulated genes, blue represents down-regulated genes). (B) 
DEMGs were obtained as the intersection of DEGs and ERC marker genes. 

3.3. GO- and KEGG-based functional-enrichment analyses of DEMGs 

A GO analysis indicated that the DEMGs were enriched for several terms associated with 
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biological processes, including extracellular structure organization, focal adhesion, and a cellular 
response to transforming the growth factor beta stimulus (Figure 3A). The KEGG pathway analysis 
suggested that DEMGs were mainly enriched for signaling-pathway terms, including proteoglycans in 
cancer, the PI3K-Akt signaling pathway, the TGF-β signaling pathway, the ECM-receptor interaction, 
and signaling pathways regulating the pluripotency of stem cells (Figure 3B). Our results suggest that 
DEMGs may promote the progression of GC through these pathways. 

 

Figure 3. Functional enrichment analyses of DEMGs. (A) GO analysis. (B) KEGG analysis. 

3.4. Construction of ERCPG signature 

A univariate Cox regression analysis was performed using the TCGA-STAD training set to 
identify 30 cell-specific marker genes (P < 0.05) (Figure 4A). A subsequent LASSO regression analysis 
revealed the final ERCPG signature out of these 30 genes (Figure 4B). Seven ERCPGs were included 
and the ERCPG-based risk score was calculated as follows: 0.0046959 Ex (COL4A1) + 0.0952825 Ex 
(F2R) + 0.0715635 Ex (MMP11) + 0.0124528 Ex (CAV1) + 0.0619419 Ex (VCAN) + 0.0481557 Ex 
(FKBP10) + 0.0524272 Ex (APOD). 

All seven ERCPGs were identified as risk factors (hazard ratio [HR] > 1). The log-rank test and 
K-M survival analysis were performed using the GEPIA database, and the results suggested that the 
high expression of six ERCPGs (COL4A1, F2R, CAV1, VCAN, FKBP10, and APOD) significantly 
correlated with a poor prognosis in patients with GC (P < 0.05) (Figure 4C). As can be seen from the 
distribution of ERCPGs in cell clusters, COL4A1, F2R, MMP11, CAV1, VCAN, and FKBP10 were 
distributed in CAF-related subpopulations (cell cluster 9), whereas APOD was mainly distributed in 
EC-related subpopulations (cell cluster 13) (Figure 4D). 
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Figure 4. Screening of marker genes, COL4A1, F2R, CAV1, VCAN, FKBP10, and APOD, 
in the ERC subpopulation with prognostic significance. ERCPGs with prognostic 
significance were identified by univariate Cox (A) and LASSO regression analyses (B). 
(C) K-M analysis of ERCPGs. (D) Distribution of ERCPGs in cell clusters. 
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3.5. Prognostic-utility analysis of ERCPG signature 

We tested the prognostic utility of the ERCPG signature. The GSE15459 validation set and the 
TCGA-STAD training set were divided into high- and low-risk groups based on the median values of 
the ERCPG risk scores. The patients in the high-risk subgroup had a shorter OS time (Figure 5A, B). 
The risk distribution and survival status of patients with GC are shown in Figure 5C and D. The area 
under the ROC curve (AUC) values in patients in the TCGA-STAD training set were 0.636, 0.635, 
and 0.787, after 1, 3, and 5-years, respectively (Figure 5E). The AUC values in the GSE15459 
validation set were 0.688, 0.698, and 0.730, after 1, 3, and 5-years, respectively (Figure 5F). 
Univariate Cox and multivariate Cox regression analyses were performed to evaluate the 
prognostic value based on the TCGA-STAD training set, the ERCPG signature, and other clinical 
data of patients with GC. Age (HR: 1.024 and 1.032; 95% confidence interval [CI]: 1.006–1.042 
and 1.012–1.051; and P = 0.010 and P = 0.001, respectively), staging (HR: 1.549 and 1.533; 95% CI: 
1.244–1.929 and 1.066–2.164; and P < 0.001 and P = 0.015, respectively), and risk scores (HR: 3.741 
and 3.768; 95% CI: 2.048–6.835 and 1.999–7.105; and P < 0.001 and P < 0.001, respectively) were 
independent risk factors for GC (Figure 6A, B). Cox analyses of the GSE15459 validation set 
showed that staging (HR: 2.789 and 2.625; 95% CI: 2.140–3.635 and 1.992–3.459; and P < 0.001 and 
P < 0.001, respectively) and risk scores (HR: 3.351 and 3.800; 95% CI: 2.122–6.212 and 2.065–5.160; 
and P < 0.001 and P < 0.001, respectively) had independent prognostic values (Figure 6 C, D). 

We further analyzed the prognostic utility of the ERCPG risk scores in patient subgroups with 
different clinical and prognostic characteristics. As shown in Figure 7, patients aged ≤ 65 years (P = 0.012, 
FDR = 0.046), male patients (P = 0.010, FDR = 0.007), female patients (P = 0.028, FDR = 0.046), 
patients with grade 3 GC (P = 0.040, FDR = 0.042), patients with stage III-IV GC (P = 0.007, FDR = 
0.006), patients with T3-4 GC (P = 0.004, FDR = 0.005), patients with N1-3 GC (P = 0.003, FDR 
= 0.008), patients with M0 GC (P = 0.009, FDR = 0.007), and in the low-risk group survived longer 
and had a better prognosis than those in the high-risk group. These results indicate that the ERCPG 
signature can be used as an independent predictor of the prognosis of patients with GC. 

3.6. Construction and validation of ERCPG nomogram 

To improve the clinical utility of the ERCPG signature, we constructed an ERCPG nomogram 
with the independent prognostic factors obtained from the multivariate Cox regression analysis of 
the TCGA-STAD training set (Figure 8A). The generated 1, 3, and 5-year calibration curves 
confirmed the accuracy of the ERCPG nomogram using both the TCGA-STAD training set and the 
GSE15459 validation set (Figure 8B, C). Hence, our results suggest that the ERCPG nomogram 
has a good clinical value. 
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Figure 5. Correlation of the ERCPG signature with the survival and prognosis of patients 
with GC. K-M curves for the ERCPG-based high- and low-risk groups, as determined 
using the TCGA-STAD training set (A) and the GSE15459 validation set (B). Distribution 
of the ERCPG risk score and patient survival status, and heatmaps for ERCPG expression 
levels, as determined using the TCGA-STAD training cohort (C) and GSE15459 validation 
cohort (D). The ROC curves depict the accuracy of the ERCPG signature in predicting the 
1, 3, and 5-year survival rates of patients with GC in the TCGA-STAD training cohort (E) 
and the GSE15459 validation cohort (F). 
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Figure 6. Independent prognostic analysis of the ERCPG signature in different clinical 
subgroups. Univariate Cox analysis (A) and multivariate Cox analysis (B) using the 
TCGA-STAD training set. Univariate Cox analysis (C) and the multivariate Cox analysis 
(D) using the GSE15459 validation set. 

 

Figure 7. K-M analyses of patients with different clinical characteristics, as determined 
using the TCGA-STAD cohort. 
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Figure 8. Construction and validation of the ERCPG nomogram. (A) Nomogram was 
constructed based on age, staging, and grouping by using the ERCPG risk score. (B) 
Calibration curves for the TCGA-STAD training set. (C) Calibration curves for the 
GSE15459 validation set. 

3.7. Correlations between ERCPG risk scores and associated signaling pathways 

We analyzed the signaling pathways related to ERCPG risk scores using the TCGA-STAD training 
set. Patients in the high-risk subgroup had a higher expression of genes that are closely associated with 
several pathway terms, including cell adhesion molecules (CAMs), ECM receptor interaction, focal 
adhesion, the Wnt signaling pathway, apical junction, the epithelial mesenchymal transition, and the 
TGF-β signaling pathway (Figure 9A and B). ECM receptor interaction, focal adhesion, and EMT were 
considerably enriched terms in the ERC subpopulation (cell clusters 4, 9 and 13) (Figure 9C). These 
results indicate that the ERCPG signature could play a role in promoting GC invasion through CAFs 
and ECs mediating the abovementioned pathways. Notably, the EMT signaling pathway was the most 
enriched in the CAF subpopulation among the other cell subpopulations, suggesting that CAFs may 
be a key cell subpopulation mediating the EMT signaling pathway in GC. 
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Figure 9. Functional enrichment analysis of the ERCPG signature. (A) Functional enrichment 
analysis based on the KEGG gene set. (B) Functional enrichment analysis based on the 
HALLMARK gene set. (C) Distribution of enriched pathways in the cell clusters. 
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3.8. Relationships Between ERCPGs and Immune-Cell Infiltration 

Tumoral immune tolerance usually results from interactions between tumor-associated immune 
cells and cancer cells [37]. Regulation of the TME by immune cells can greatly affect the efficacy of 
cancer immunotherapy. Hence, we evaluated the relationship between ERCPG risk scores and immune-
cell infiltration. As shown in Figure 10, significantly higher M2 macrophage infiltration (P < 0.001) was 
found in patients with GC with a high ERCPG risk score than in those with a low ERCPG risk score. 
The infiltration levels of plasma cells (P = 0.013), activated memory CD4 T cells (P = 0.006), and M1 
macrophages (P = 0.022) were higher in low-risk patients with GC than in high-risk patients. Analysis 
of the seven ERCPGs and six types of immune cells in the TIMER database suggested that the 
expression of ERCPGs was closely correlated with immune cells in GC (Figure 11). The seven 
ERCPGs correlated significantly and positively with macrophages (P < 0.01). 

 

Figure 10. CIBERSORT algorithm-based investigation of the distribution of immune cells 
in the low-ERCPG risk and high-ERCPG risk subgroups. 

3.9. Expression of ERCPGs in GC cell lines 

Based on normal gastric cell lines and GC cell lines, we verified the expression of the ERCPG 
signature through in vitro experiments. A qRT-PCR analysis confirmed that COL4A1 was highly 
expressed in HGC-27 and BGC-823, F2R, MMP11, CAV1, and VCAN were highly expressed in 
MKN-45 and Hs-746T compared with GES-1. FKBP10 was expressed to a greater extent in all four 
GC cell lines than in normal gastric mucosal cells. APOD was highly expressed in MKN-45, HGC-27, 
and BGC-823 (Figure 12). 
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Figure 11. Correlation of the seven ERCPGs with immune cells, as determined using the 
TIMER database. 

  

Figure 12. Differential expression of ERCPG signature in normal gastric cell lines and GC 
cell lines. (****:P < 0.0001,***:P < 0.001,**:P < 0.01,*:P < 0.05) 
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4. Discussion 

Recently, the carcinogenic mechanism of EMT has been extensively investigated, and the roles of 
CAFs and ECs in the development of human malignant tumors have attracted increasing attention. As 
an important member of the stromal cell subpopulation in the TME, CAFs have inspired novel 
approaches related to the current development of targeted drugs for cancer immunotherapy [38]. ECs 
are particularly associated with the progression of epithelial malignancies induced by activation of the 
EMT program owing to their ability to transform into cells with different phenotypes under different 
cellular states [39]. Liu and Chu [19] reported that the E-cadherin expression of ECs may offer new 
opportunities for GC diagnosis and treatment. However, the prognostic utility of CAF- and EC-related 
biomarkers for patients with tumor remains not fully understood. 

 With the development of high-throughput sequencing technology, studies on malignant tumor 
biomarkers using omics technologies have also emerged. In particular, the rise of scRNA-seq 
technology compensates for the limitations of conventional high-throughput sequencing, providing an 
effective tool for analyzing the biological behaviors of tumors [40]. Prognostic models for predicting 
the OS of patients with cancer have been proposed based on bioinformatics investigations of EMT-
related biomarkers. Zhang et al. [41] used 11 EMT-related genes to construct a prognostic model of 
colorectal cancer. EMT-related signals have also been applied to determine the prognosis of patients 
with hepatic cancer [42]. Dai et al. [43] developed five EMT-related prognostic signals for GC. Unlike 
these studies (which focused on conventional bulk sequencing data), this study performed an in-depth 
analysis of two types of ERCs (CAFs and ECs) at the cell-subpopulation level based on scRNA-seq 
data to identify prognostic biomarkers for GC. 

To the best of our knowledge, this study was the first to analyze the characteristics of marker genes 
for CAFs and ECs in GC and construct an ERCPG signature for predicting the OS of patients with GC. 
First, we identified 740 marker genes for CAFs and ECs based on the scRNA-seq data from three 
primary GC tumor samples and performed a set-intersection analysis of the marker genes and 718 
DEGs from the bulk data to obtain 115 DEMGs. Then, we performed univariate Cox regression and 
LASSO regression analyses to construct an ERCPG signature comprised of seven genes (COL4A1, 
F2R, MMP11, CAV1, VCAN, FKBP10, and APOD). Patients with GC were divided into high- and 
low-risk groups based on the ERCPG risk scores obtained using the TCGA-STAD training set and the 
GSE15459 validation set. A K-M analysis suggested that patients in the high-risk group had a shorter 
OS. In addition, the ERCPG risk scores remarkably distinguished between patients in the high- 
and low-risk groups based on the following clinical characteristics: age < 65 years; sex; grade 3, 
T3-4, N1-3, or M0 GC; and stage III-IV GC. Univariate and multivariate Cox analyses results 
suggested that the ERCPG risk scores were independent prognostic indicators. The ROC curves 
showed a good prognostic value for the ERCPG signature in predicting the 1, 3, and 5-year survival 
rates of patients with GC. Furthermore, to improve the efficiency of the ERCPG signature in predicting 
the OS of patients with GC, we constructed an ERCPG nomogram using independent prognostic factors. 
The calibration curves demonstrated good consistency between the predicted and actual values. Finally, 
cellular assays confirmed that ERCPGs were expressed in higher abundance in GC cell lines than in normal 
gastric cells. 

We reviewed the literature regarding the seven ERCPGs. COL4A1 upregulation by lncRNA 
SND1-IT1 and miR-124 in GC promoted the occurrence of EMT [44]. In hepatic cancer, COL4A1 
upregulation by RUNX1 facilitated the growth and invasion of tumor cells through the activation of 
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FAK-Src signaling. COL4A1 overexpression contributed to a poor prognosis in patients with 
hepatic cancer [45]. Moreover, COL4A1 was considerably upregulated in bladder cancer tissues, 
and COL4A1 produced by bladder cancer cells facilitated tumor budding and was suggestive of a poor 
prognosis [46,47], which is consistent with our results. 

CAV1 expression was regulated by miR-103/107 (miR-103 and miR-107) and closely associated 
with multidrug resistance in GC [48]. In addition, CAV1 expression was upregulated in GC metastatic 
lymph nodes, which were indicative of a poor prognosis in patients with GC [49]. CAV1 was 
overexpressed in pulmonary cancer tissues, and its knockout in a non-small cell lung cancer cell line 
(A549) impaired the proliferative and invasive capacities of tumor cells [50]. These findings on CAV1 
are consistent with our results. 

The activation of F2R (also known as PAR1) by agonists enhanced the proliferative and invasive 
capacities of GC cells and induced the activation of other oncogenic factors, such as TN-C and NF-κB [51]. 
F2R can be overexpressed in triple-negative breast cancer due to the absence of ARRDC3 and can 
promote tumor progression by regulating WWTR1 and activating Hippo signaling [52]. Moreover, an 
elevated expression of F2R mediated by the TGFβ signaling pathway was observed in A549 lung 
cancer cells and might contribute to the EMT process [53]. Our results confirmed the malignant 
biological behavior of F2R in malignant tumors. 

Furthermore, the proliferative capacity of GC cells was considerably impaired by MMP11 
silencing in the GC cell line BGC823 [54]. Another GC study on MMP11 showed that its negative 
regulation by miR-139 suppressed GC progression [55]. Let-7c inhibited the growth and metastasis of 
colon cancer by downregulating MMP11 [56]. Moreover, MMP11 was highly expressed in breast 
cancer cells and clinical specimens, and its expression negatively correlated with the OS of patients 
with breast cancer; MMP11 can enhance the structural stability of Smad2 in the TGFβ signaling 
pathway, hence promoting breast cancer progression [57]. These findings are consistent with our 
findings on MMP11, indicating MMP11 as a potential therapeutic target for treating malignant tumors. 

VCAN knockout in two GC cell lines (AGS and NCI-N87) remarkably inhibited the proliferation 
and migration of tumor cells [58]. Platelet-derived growth factors can regulate VCAN expression and 
thereby stimulate the proliferation of arterial smooth muscle cells; VCAN expression can promote 
ECM expansion [59], which might be associated with tumor invasion and metastasis. Snail protein in 
breast cancer cells mediated the overexpression of PAPSS2 and VCAN, subsequently disrupting ECM 
homeostasis in the tumor stroma, triggering EMT, and ultimately facilitating the invasion and 
metastasis of tumor cells [60]. Similarly, our results suggest that a high VCAN expression in patients 
with GC is correlated with a shorter OS. 

FKBP10 was upregulated in GC cell lines and may promote GC progression by mediating the 
PI3K/AKT signaling pathway [61]. In contrast, its downregulation inhibited the progression of KRAS-
driven lung cancer, and its overexpression was dependent on PPIase activity during oncogenesis [62]. 
Moreover, FKBP10 was upregulated in gliomas, stimulating the growth of tumor cells by mediating 
the AKT-CREB-PCNA signaling pathway [63]. Our results also suggest that low FKBP10 expression 
is associated with a good OS in patients with GC. 

APOD upregulation was observed in drug-resistant breast cancer cells [64]. Ashida et al. [65] found 
that APOD was upregulated during the progression of invasive prostate cancer and was highly 
expressed in prostate cancer cells. Additionally, Vazquez et al. [66] detected higher APOD expression 
in ovarian cancer tissues than in normal ovaries. Interestingly, however, patients with ovarian cancer 
with high APOD expression had a better prognosis than those with low APOD expression. Our results 
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showed that the expression of APOD (a marker gene for ECs) in patients with GC was associated with 
a poor prognosis. Other bioinformatics analyses of APOD in GC also showed that APOD expression was 
a poor prognostic factor [67,68]; however, further relevant studies are still required to clarify its role in GC. 

This is the first study to investigate biomarkers of ERCs using scRNA-seq data. We identified marker 
genes for CAFs (COL4A1, F2R, MMP11, CAV1, VCAN, and FKBP10) and a marker gene for ECs 
(APOD). Notably, the relationship between APOD and GC ECs is first reported in this study; further 
fundamental studies are urgently required to confirm this correlation. Results from enrichment analyses 
showed that 115 DEMGs were active in multiple pathways, including those related to focal adhesion, the 
PI3K-Akt pathway, and ECM-receptor interactions. The high-risk subgroup was enriched in several terms, 
including cell adhesion molecules (CAMs), TGF-β and Wnt signaling pathways, and cell-cluster graphs, 
suggesting that these pathways were strongly activated in the CAF or EC subpopulations. The correlation 
of the EMT with the PI3K-Akt and TGF-β signaling pathways in GC has been elucidated [69]. The ERCPG 
signature may mediate tumor invasion and metastasis via these pathways. 

In this study, we performed immune-cell infiltration analysis based on the ERCPG signature and 
found that the infiltration level of M2 macrophages was elevated in high-risk patients with GC, 
whereas that of plasma cells, activated memory CD4 T cells, and M1 macrophages were elevated in 
low-risk patients with GC. The expression of all seven ERCPGs considerably and positively correlated 
with the extent of macrophage infiltration. M2 macrophages sensitized by mesenchymal stromal cells 
induced EMT in the GC TME [70]. Su et al. [71] suggested that breast cancer cells can secrete 
granulocyte macrophage colony-stimulating factor during EMT to induce macrophage infiltration and 
promote tumor metastasis. In addition, CCL18 derived from activated macrophages can induce EMT 
progression. IL-8 produced by hepatic cancer cells promoted the proliferation of M2 macrophages and 
facilitated the EMT program and tumor invasion [72]. 

Our results showed that all seven ERCPGs considerably and positively correlated with macrophage 
levels and the abnormal expression of ERCPGs in the high-risk subgroup, which may have promoted 
EMT by affecting the proliferation of M2 macrophages in GC, ultimately leading to a poor patient 
prognosisa. Wouters et al. [73] reported that infiltration of plasma cells into tumor tissues was 
indicative of a good prognosis, and the anti-tumor activity of activated memory T cells and M1 
macrophages have been confirmed [74,75]. Hence, we deduced that the proliferation of plasma cells, 
activated memory T cells, and M1 macrophages might exhibit anti-tumor activity in patients with GC 
in the low-risk subgroup. 

This study had some limitations. First, the scRNA-seq data and bulk data were obtained from 
public databases. Thus, more clinicopathological data is needed to analyze the prognostic value of 
ERCPGs. Future prospective studies should be conducted to confirm our results. In addition, more 
basic studies are still needed to identify the relationship between ERCPGs and cell subpopulations and 
their effects on the GC immune microenvironment. 

5. Conclusions 

We integrated scRNA-seq data from patients with GC with bulk sequencing data to construct an 
EMT-related prognostic signature comprised of seven genes (COL4A1, F2R, MMP11, CAV1, VCAN, 
FKBP10, and APOD) in TCGA-STAD training set. All seven ERCPGs were found to be closely related 
with GC survival and were effectively validated in the GSE15459 validation set and in vitro cell 
experiments. A functional enrichment analysis revealed that seven ERCPGs may promote GC 
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progression through signaling pathways such as CAMs, ECM receptor interaction, focal adhesion, and 
the Wnt signaling pathway. In addition, our findings lay a foundation for future research on the immune 
microenvironment of GC. 
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