Citation: Damilola Olabode, Jordan Culp, Allison Fisher, Angela Tower, Dylan Hull-Nye, Xueying Wang. Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 950-967. doi: 10.3934/mbe.2021050
[1] | M. V. Krishna, J. Prakash, Mathematical modelling on phase based transmissibility of corona virus, Infect. Dis. Model., 5 (2020), 375–385. |
[2] | R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, et al., Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (sars-cov-2), Science, 368 (2020), 489–493. doi: 10.1126/science.abb3221 |
[3] | A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553–558. doi: 10.1016/S1473-3099(20)30144-4 |
[4] | J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395 (2020), 689–697. doi: 10.1016/S0140-6736(20)30260-9 |
[5] | C. Rothe, M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch, et al., Transmission of 2019-ncov infection from an asymptomatic contact in germany, N. Engl. J. Med., 382 (2020), 970–971. doi: 10.1056/NEJMc2001468 |
[6] | C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2708–2724. doi: 10.3934/mbe.2020148 |
[7] | L. Peng, W. Yang, D. Zhang, C. Zhuge, L. Hong, Epidemic analysis of COVID-19 in China by dynamical modeling, arXiv preprint: 2002.06563, 2020. |
[8] | J. S. Weitz, S. J. Beckett, A. R. Coenen, D. Demory, M. Dominguez-Mirazo, J. Dushoff, et al., Modeling shield immunity to reduce COVID-19 epidemic spread, Nat. Med., 26 (2020), 849–854. doi: 10.1038/s41591-020-0895-3 |
[9] | P. Sookaromdee, V. Wiwanitkit, Imported cases of 2019-novel coronavirus (2019-ncov) infections in Thailand: Mathematical modelling of the outbreak, Asian Pac. J. Trop. Med., 13 (2020), 139–140. doi: 10.4103/1995-7645.277516 |
[10] | Z. Cakir, H. Savas, A mathematical modelling approach in the spread of the novel 2019 coronavirus sars-cov-2 (COVID-19) pandemic, Electron. J. Gen. Med., 17 (2020), em205. doi: 10.29333/ejgm/7861 |
[11] | V. Volpert, M. Banerjee, S. Petrovskii, On a quarantine model of coronavirus infection and data analysis, Math. Model. Nat. Phenom., 15, 24. |
[12] | P. Khrapov, A. Loginova, Mathematical modelling of the dynamics of the coronavirus COVID-19 epidemic development in China, Int. J. Open Inf. Tech., 8 (2020), 13–16. |
[13] | T.-M. Chen, J. Rui, Q.-P. Wang, Z.-Y. Zhao, J.-A. Cui, L. Yin, A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infect. Dis. Poverty, 9 (2020), 1–8. doi: 10.1186/s40249-019-0617-6 |
[14] | S. H. Khoshnaw, R. H. Salih, S. Sulaimany, Mathematical modelling for coronavirus disease (COVID-19) in predicting future behaviours and sensitivity analysis, Math. Model. Nat. Phenom., 15 (2020), 33. doi: 10.1051/mmnp/2020020 |
[15] | L. Zhong, L. Mu, J. Li, J. Wang, Z. Yin, D. Liu, Early prediction of the 2019 novel coronavirus outbreak in the mainland China based on simple mathematical model, IEEE Access, 8 (2020), 51761–51769. doi: 10.1109/ACCESS.2020.2979599 |
[16] | S. He, S. Tang, L. Rong, A discrete stochastic model of the COVID-19 outbreak: Forecast and control, Math. Biosci. Eng., 17 (2020), 2792–2804. doi: 10.3934/mbe.2020153 |
[17] | K. Chatterjee, K. Chatterjee, A. Kumar, S. Shankar, Healthcare impact of COVID-19 epidemic in India: A stochastic mathematical model, Med. J. Armed Forces India, 76 (2020), 147–155. doi: 10.1016/j.mjafi.2020.03.022 |
[18] | F. Ndairou, I. Area, J. J. Nieto, D. F. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos Soliton. Fract., 135 (2020), 109846. doi: 10.1016/j.chaos.2020.109846 |
[19] | S. He, Y. Peng, K. Sun, Seir modeling of the COVID-19 and its dynamics, Nonlinear Dyn., 101 (2020), 1667–1680. doi: 10.1007/s11071-020-05743-y |
[20] | H. Zhao, Z. Feng, Staggered release policies for COVID-19 control: Costs and benefits of relaxing restrictions by age and risk, Math. Biosci., 326 (2020), 108405. doi: 10.1016/j.mbs.2020.108405 |
[21] | Z. Yang, Z. Zeng, K. Wang, S.-S. Wong, W. Liang, M. Zanin, et al., Modified seir and ai prediction of the epidemics trend of COVID-19 in china under public health interventions, J. Thorac. Dis., 12 (2020), 165–174. doi: 10.21037/jtd.2020.02.64 |
[22] | Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S. S. Musa, et al., A conceptual model for the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China with individual reaction and governmental action, Int. J. Infect. Dis., 93 (2020), 211–216. doi: 10.1016/j.ijid.2020.02.058 |
[23] | X. Hao, S. Cheng, D. Wu, T. Wu, X. Lin, C. Wang, Reconstruction of the full transmission dynamics of COVID-19 in Wuhan, Nature, 584 (2020), 420–424. doi: 10.1038/s41586-020-2554-8 |
[24] | P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6 |
[25] | J. LaSalle, The stability of dynamical systems, Society for Industrial and Applied Mathematics, 1976. |
[26] | L. J. Allen, G. E. Lahodny Jr, Extinction thresholds in deterministic and stochastic epidemic models, J. Biol. Dyn., 6 (2012), 590–611. doi: 10.1080/17513758.2012.665502 |
[27] | K. B. Athreya, P. Jagers, Classical and modern branching processes, vol. 84, Springer Science & Business Media, 2012. |
[28] | K. S. Dorman, J. S. Sinsheimer, K. Lange, In the garden of branching processes, SIAM Rev., 46 (2004), 202–229. doi: 10.1137/S0036144502417843 |
[29] | E. L. Ionides, A. Bhadra, Y. Atchadé, A. King, Iterated filtering, Ann. Stat., 39 (2011), 1776–1802. |
[30] | W. H. Organization, WHO novel coronavirus (2019-nCoV) situation reports, 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. |
[31] | J. H. U. C. for Systems Science and Engineering, Covid-19 data repository, 2020. Available from: https://github.com/CSSEGISandData/COVID-19, Accessed: July 2020. |
[32] | J. T. Wu, K. Leung, M. Bushman, N. Kishore, R. Niehus, P. M. de Salazar, et al., Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China, Nat. Med., 26 (2020), 506–510. doi: 10.1038/s41591-020-0822-7 |
[33] | N. H. Commission, National health commission of China daily reports on novel coronavirus, available from: http://www.nhc.gov.cn/yjb/pzhgli/new_list.shtml. |
[34] | G. of Wuhan, The government of Wuhan homepage, available from: http://english.wh.gov.cn. |
[35] | G. Huang, C. Che, R. Frost, Wuhan virus news: Coronavirus city lockdown of millions, 2020. Available from: https://www.bloomberg.com/news/articles/2020-01-27/worried-angry-and-isolated-life-under–s-lockdown. |
[36] | R. Verity, L. C. Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai, et al., Estimates of the severity of coronavirus disease 2019: a model-based analysis, Lancet Infect. Dis., 20 (2020), 669–677. doi: 10.1016/S1473-3099(20)30243-7 |
[37] | J. H. University, Johns Hopkins University: New Study on Coronavirus Estimates 5.1 Days for Incubation Period - ProQuest, available from: https://search.proquest.com/docview/2375478043. |
[38] | W. H. Organization, Report of the WHO-China joint mission on Coronavirus disease 2019, 16-24 February 2020, available from: http://www.nhc.gov.cn/yjb/s2907/new_list.shtml. |
[39] | A. Pan, L. Liu, C. Wang, H. Guo, X. Hao, Q. Wang, et al., Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China, 2020. Jama, 323 (2020), 1915–1923. |
[40] | T. K. Tsang, P. Wu, Y. L. Y. Lin, E. Lau, G. M. Leung, B. J. Cowling, Impact of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China, medRxiv, (2020). |
[41] | M. He, L. Li, L. P. Dehner, L. Dunn, Cremation based estimates suggest significant under-and delayed reporting of COVID-19 epidemic data in Wuhan and China, medRxiv, (2020). |
[42] | C. Cadell, Data suggest virus infections underreported, exaggerating fatality rate, 2020. available from: https://fr.reuters.com/article/us-china-health-deaths-idUKKBN1ZZ1AH. |
[43] | N. Imai, I. Dorigatti, A. Cori, C. Donnelly, S. Riley, N. Ferguson, Report 2: Estimating the potential total number of novel Coronavirus cases in Wuhan City, China, Technical Report 2, Imperial College London COVID-19 Response Team, London, UK, 2020. |
[44] | J. Ge, D. He, Z. Lin, H. Zhu, Z. Zhuang, Four-tier response system and spatial propagation of COVID-19 in China by a network model, Math. Biosci., 330 (2020), 108484. doi: 10.1016/j.mbs.2020.108484 |