Citation: Dawei Ren, Xiaodong Zhang, Shaojuan Lei, Zehua Bi. Research on flexibility of production system based on hybrid modeling and simulation[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 933-949. doi: 10.3934/mbe.2021049
[1] | R. Laughery, Modeling human performance in systems, in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Sage Publications Ltd., 1 (2000), 2254–2254. |
[2] | R. Qin, D. A. Nembhard, W. L. Barnes II, Workforce flexibility in operations management, Surv. Oper. Res. Manage. Sci., 20 (2015), 19–33. |
[3] | Y. Yang, J. Tang, W. Sun, Y. Yin, I. Kaku, Reducing worker(s) by converting assembly line into a pure cell system, Int. J. Prod. Econ., 145 (2013), 799–806. doi: 10.1016/j.ijpe.2013.06.009 |
[4] | G. A. Süer, K. Kamat, E. Mese, J. Huang, Minimizing total tardiness subject to manpower restriction in labor–intensive manufacturing cells, Math. Comput. Modell., 57 (2013), 741–753. doi: 10.1016/j.mcm.2012.08.013 |
[5] | G. Egilmez, B. Erenay, G. A. Süer, Stochastic skill-based manpower allocation in a cellular manufacturing system, J. Manuf. Syst., 33 (2014), 578–588. |
[6] | J. S. Evans, Strategic flexibility for high technology manoeuvres: a conceptual framework, J. Manage. Stud., 28 (1991), 69–89. doi: 10.1111/j.1467-6486.1991.tb00271.x |
[7] | R. Xu, Q. Qin, Impact of Entrepreneurial Orientation and Organizational Flexibility on Technological Innovation, in 2010 3rd International Conference on Information Management, Innovation Management and Industrial Engineering, 2 (2010), 421–425. |
[8] | M. Dağdeviren, A hybrid multi-criteria decision-making model for personnel selection in manufacturing systems, J. Intell. Manuf., 21 (2010), 451–460. doi: 10.1007/s10845-008-0200-7 |
[9] | O. Oleghe, K. Salonitis, Hybrid simulation modelling of the human-production process interface in lean manufacturing systems, Int. J. Lean Six Sigma, 10 (2019), 665–690. doi: 10.1108/IJLSS-01-2018-0004 |
[10] | M. K. Malhotra, T. D. Fry, H. V. Kher, J. M. Donohue, The impact of learning and labor attrition on worker flexibility in dual resource constrained job shops, Decis. Sci., 24 (1993), 641–664. doi: 10.1111/j.1540-5915.1993.tb01296.x |
[11] | B. Denkena, M. A. Dittrich, F. Winter, C. Wagener, Simulation-based planning and evaluation of personnel scheduling in knowledge-intensive production systems, Prod. Eng., 10 (2016), 489–496. doi: 10.1007/s11740-016-0693-4 |
[12] | D. J. Davis, H. V. Kher, B. J. Wagner, Influence of workload imbalances on the need for worker flexibility, Comput. Ind. Eng., 57 (2009), 319–329. doi: 10.1016/j.cie.2008.11.029 |
[13] | C. Pach, T. Berger, Y. Sallez, T. Bonte, E. Adam, D. Trentesaux, Reactive and energy-aware scheduling of flexible manufacturing systems using potential fields, Comput. Ind., 65 (2014), 434–448. doi: 10.1016/j.compind.2013.11.008 |
[14] | A. Ferjani, A. Ammar, H. Pierreval, S. Elkosantini, A simulation-optimization based heuristic for the online assignment of multi–skilled workers subjected to fatigue in manufacturing systems, Comput. Ind. Eng., 112 (2017), 663–674. doi: 10.1016/j.cie.2017.02.008 |
[15] | F. Phillips, S. D. Tuladhar, Measuring organizational flexibility: an exploration and general model, Technol. Forecasting Soc. Change, 64 (2000), 23–38. doi: 10.1016/S0040-1625(99)00077-3 |
[16] | R. V. Rao, A decision-making framework model for evaluating flexible manufacturing systems using digraph and matrix methods, Int. J. Adv. Manuf. Technol., 30 (2006), 1101–1110. doi: 10.1007/s00170-005-0150-6 |
[17] | H. Yue, J. Slomp, E. Molleman, D. J. Van Der Zee, Worker flexibility in a parallel dual resource constrained job shop, Int. J. Prod. Res., 46 (2008), 451–467. |
[18] | D. Nembhard, K. Prichanont, Cross training in serial production with process characteristics and operational factors, IEEE Trans. Eng. Manage., 54 (2007), 565–575. doi: 10.1109/TEM.2007.900793 |
[19] | K. Georgoulias, N. Papakostas, G. Chryssolouris, S. Stanev, H. Krappe, J. Ovtcharova, Evaluation of flexibility for the effective change management of manufacturing organizations, Rob. Comput. Integr. Manuf., 25 (2009), 888–893. doi: 10.1016/j.rcim.2009.04.010 |
[20] | S. K. Singh, M. K. Singh, Evaluation of productivity, quality and flexibility of an advanced manufacturing system, J. Inst. Eng. (India): Ser. C, 93 (2012), 93–101. doi: 10.1007/s40032-011-0002-0 |
[21] | M. Naderi, E. Ares, G. Peláez, D. Prieto, A. Fernández, L. P. Ferreira, The sustainable evaluation of manufacturing systems based on simulation using an economic index function: A case study, Procedia Manuf., 13 (2017), 1043–1050. doi: 10.1016/j.promfg.2017.09.128 |
[22] | A. Yadav, S. C. Jayswal, Evaluation of batching and layout on the performance of flexible manufacturing system, Int. J. Adv. Manuf. Technol., 101 (2019), 1435–1449. doi: 10.1007/s00170-018-2999-1 |
[23] | N. V. Hop, Approach to measure the mix response flexibility of manufacturing systems, In. J. Prod. Res., 42 (2004), 1407–1418. doi: 10.1080/00207540310001638064 |
[24] | M. I. M. Wahab, D. Wu, C. Lee, A generic approach to measuring the machine flexibility of manufacturing systems, Eur. J. Oper. Res., 186 (2008), 137–149. doi: 10.1016/j.ejor.2007.01.052 |
[25] | S. Kemmoe, P. Pernot, N. Tchernev, Model for flexibility evaluation in manufacturing network strategic planning, Int. J. Prod. Res., 52 (2014), 4396–4411. doi: 10.1080/00207543.2013.845703 |
[26] | R. Mishra, A comparative evaluation of manufacturing flexibility adoption in SMEs and large firms in India, J. Manuf. Technol. Manage., 27 (2016), 730–762. doi: 10.1108/JMTM-11-2015-0105 |
[27] | F. Long, P. Zeiler, B. Bertsche, Modelling the flexibility of production systems in Industry 4.0 for analysing their productivity and availability with high-level Petri nets, IFAC-PapersOnLine, 50 (2017), 5680–5687. |
[28] | R. Mishra, A. K. Pundir, L. Ganapathy, Evaluation and prioritisation of manufacturing flexibility alternatives using integrated AHP and TOPSIS method, Benchmarking: Int. J., 24 (2017), 1437–1465. doi: 10.1108/BIJ-07-2015-0077 |
[29] | M. Mohun, Modelling of fuzzy discrete event dynamic systems, in Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, (2005), 278–283. |
[30] | R. Kia, A. Baboli, N. Javadian, R. Tavakkoli-Moghaddam, M. Kazemi, J. Khorrami, Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing, Comput. Oper. Res., 39 (2012), 2642–2658. doi: 10.1016/j.cor.2012.01.012 |
[31] | B. Lennartson, O. Wigstrom, M. Fabian, F. Basile, Unified model for synthesis and optimization of discrete event and hybrid systems, IFAC Proc. Vol., 47 (2014), 86–92. |
[32] | D. Antonelli, P. Litwin, D. Stadnicka, Multiple system dynamics and discrete event simulation for manufacturing system performance evaluation, Procedia CIRP, 78 (2018), 178–183. doi: 10.1016/j.procir.2018.08.312 |
[33] | S. E. H. Petroodi, A. B. D. Eynaud, N. Klement, R. Tavakkoli-Moghaddam, Simulation–based optimization approach with scenario–based product sequence in a reconfigurable manufacturing system (RMS): A case study, IFAC-PapersOnLine, 52 (2019), 2638–2643. doi: 10.1016/j.ifacol.2019.11.605 |
[34] | D. Xu, C. Lu, W. Zhou, S. Liu, Hybrid model of multi-agent and DEDS for steelmaking-continuous casting-hot rolling manufacturing process simulation, in The 26th Chinese Control and Decision Conference (2014 CCDC), (2014), 1936–1940. |
[35] | Z. Lin, A. Matta, J. G. Shanthikumar, Combining simulation experiments and analytical models with area–based accuracy for performance evaluation of manufacturing systems, IISE Trans., 51 (2019), 266–283. doi: 10.1080/24725854.2018.1490046 |
[36] | P. Pawlewski, M. Anholcer, Relational database template in the simulation modeling of manufacturing systems, IFAC PapersOnLine, 52 (2019), 1744–1748. doi: 10.1016/j.ifacol.2019.11.453 |
[37] | A. V. Barenji, R. V. Barenji, Improving multi-agent manufacturing control system by indirect communication based on ant agents, Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng., 231 (2017), 447–458. |
[38] | X. Zhang, S. Tang, X. Liu, R. Malekian, Z. Li, A novel multi-agent-based collaborative virtual manufacturing environment integrated with edge computing technique, Energies, 12 (2019), 2815. doi: 10.3390/en12142815 |
[39] | X. Zhang, J. Qiu, D. Zhao, C. M. Schlick, A Human-Oriented Simulation Approach for Labor Assignment Flexibility in Changeover Processes of Manufacturing Cells, Hum. Factors Ergon. Manuf. Serv. Ind., 25 (2015), 740–757. doi: 10.1002/hfm.20589 |