Research article

Analysis of a COVID-19 model with media coverage and limited resources


  • Received: 12 December 2023 Revised: 20 February 2024 Accepted: 29 February 2024 Published: 06 March 2024
  • The novel coronavirus disease (COVID-19) pandemic has profoundly impacted the global economy and human health. The paper mainly proposed an improved susceptible-exposed-infected-recovered (SEIR) epidemic model with media coverage and limited medical resources to investigate the spread of COVID-19. We proved the positivity and boundedness of the solution. The existence and local asymptotically stability of equilibria were studied and a sufficient criterion was established for backward bifurcation. Further, we applied the proposed model to study the trend of COVID-19 in Shanghai, China, from March to April 2022. The results showed sensitivity analysis, bifurcation, and the effects of critical parameters in the COVID-19 model.

    Citation: Tao Chen, Zhiming Li, Ge Zhang. Analysis of a COVID-19 model with media coverage and limited resources[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5283-5307. doi: 10.3934/mbe.2024233

    Related Papers:

  • The novel coronavirus disease (COVID-19) pandemic has profoundly impacted the global economy and human health. The paper mainly proposed an improved susceptible-exposed-infected-recovered (SEIR) epidemic model with media coverage and limited medical resources to investigate the spread of COVID-19. We proved the positivity and boundedness of the solution. The existence and local asymptotically stability of equilibria were studied and a sufficient criterion was established for backward bifurcation. Further, we applied the proposed model to study the trend of COVID-19 in Shanghai, China, from March to April 2022. The results showed sensitivity analysis, bifurcation, and the effects of critical parameters in the COVID-19 model.



    加载中


    [1] K. Sarkar, J. Mondal, S. Khajanchi, How do the contaminated environment influence the transmission dynamics of COVID-19 pandemic, Eur. Phys. J. Spec. Top., 231 (2022), 3697–3716. https://doi.org/10.1140/epjs/s11734-022-00648-w doi: 10.1140/epjs/s11734-022-00648-w
    [2] World Health Organization, Coronavirus disease (COVID-19) pandemic, 2023. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
    [3] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [4] L. Zhou, M. Fan, Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear Anal. Real World Appl., 13 (2012), 312–324. https://doi.org/10.1016/j.nonrwa.2011.07.036 doi: 10.1016/j.nonrwa.2011.07.036
    [5] R. George, N. Gul, A. Zeb, Z. Avazzadeh, S. Djilali, S. Rezapour, Bifurcations analysis of a discrete time SIR epidemic model with nonlinear incidence function, Results Phys., 38 (2022), 105580. https://doi.org/10.1016/j.rinp.2022.105580 doi: 10.1016/j.rinp.2022.105580
    [6] R. M. Anderson, R. M. May, Population biology of infectious diseases: Part Ⅰ, Nature, 280 (1979), 361–367. https://doi.org/10.1038/280361a0 doi: 10.1038/280361a0
    [7] Z. Hu, P. Bi, W. Ma, S. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 93–112. https://doi.org/10.3934/dcdsb.2011.15.93 doi: 10.3934/dcdsb.2011.15.93
    [8] A. Lahrouz, L. Omari, D. Kiouach, A. Belmaâti, Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination, Appl. Math. Comput., 218 (2012), 6519–6525. https://doi.org/10.1016/j.amc.2011.12.024 doi: 10.1016/j.amc.2011.12.024
    [9] S. Gao, H. Ouyang, J. J. Nieto, Mixed vaccination strategy in SIRS epidemic model with seasonal variability on infection, Int. J. Biomath., 4 (2011), 473–491. https://doi.org/10.1142/S1793524511001337 doi: 10.1142/S1793524511001337
    [10] J. Li, Z. Ma, Global analysis of SIS epidemic models with variable total population size, Math. Comput. Modell., 39 (2004), 1231–1242. https://doi.org/10.1016/j.mcm.2004.06.004 doi: 10.1016/j.mcm.2004.06.004
    [11] Y. Li, J. Cui, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2353–2365. https://doi.org/10.1016/j.cnsns.2008.06.024 doi: 10.1016/j.cnsns.2008.06.024
    [12] M. E. Fatini, A. Lahrouz, R. Pettersson, A. Settati, R. Taki, Stochastic stability and instability of an epidemic model with relapse, Appl. Math. Comput., 316 (2018), 326–341. https://doi.org/10.1016/j.amc.2017.08.037 doi: 10.1016/j.amc.2017.08.037
    [13] Y. Ding, Y. Fu, Y. Kang, Stochastic analysis of COVID-19 by a SEIR model with Lévy noise, Chaos: Interdiscip. J. Nonlinear Sci., 31 (2021), 043132. https://doi.org/10.1063/5.0021108 doi: 10.1063/5.0021108
    [14] M. Cai, G. E. Karniadakis, C. Li, Fractional SEIR model and data-driven predictions of COVID-19 dynamics of Omicron variant, Chaos: Interdiscip. J. Nonlinear Sci., 32 (2022), 071101. https://doi.org/10.1063/5.0099450 doi: 10.1063/5.0099450
    [15] E. F. D. Goufo, C. Ravichandran, G. A. Birajdar, Self-similarity techniques for chaotic attractors with many scrolls using step series switching, Math. Modell. Anal., 26 (2021), 591–611. https://doi.org/10.3846/mma.2021.13678 doi: 10.3846/mma.2021.13678
    [16] C. Ravichandran, K. Logeswari, A. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, An epidemiological model for computer virus with Atangana-Baleanu fractional derivative, Results Phys., 51 (2023), 106601. https://doi.org/10.1016/j.rinp.2023.106601 doi: 10.1016/j.rinp.2023.106601
    [17] K. S. Nisar, K. Logeswari, V. Vijayaraj, H. M. Baskonus, C. Ravichandran, Fractional order modeling the gemini virus in capsicum annuum with optimal control, Fractal Fract., 6 (2022), 61. https://doi.org/10.3390/fractalfract6020061 doi: 10.3390/fractalfract6020061
    [18] K. Sarkar, S. Khajanchi, J. J. Nieto, Modeling and forecasting the COVID-19 pandemic in India, Chaos, Solitons Fractals, 139 (2020), 110049. https://doi.org/10.1016/j.chaos.2020.110049 doi: 10.1016/j.chaos.2020.110049
    [19] S. Khajanchi, K. Sarkar, Forecasting the daily and cumulative number of cases for the COVID-19 pandemic in India, Chaos: Interdiscip. J. Nonlinear Sci., 30 (2020), 071101. https://doi.org/10.1063/5.0016240 doi: 10.1063/5.0016240
    [20] P. Samui, J. Mondal, S. Khajanchi, A mathematical model for COVID-19 transmission dynamics with a case study of India, Chaos, Solitons Fractals, 140 (2020), 110173. https://doi.org/10.1016/j.chaos.2020.110173 doi: 10.1016/j.chaos.2020.110173
    [21] S. Khajanchi, K. Sarkar, J. Mondal, K. S. Nisar, S. F. Abdelwahab, Mathematical modeling of the COVID-19 pandemic with intervention strategies, Results Phys., 25 (2021), 104285. https://doi.org/10.1016/j.rinp.2021.104285 doi: 10.1016/j.rinp.2021.104285
    [22] R. K. Rai, P. K. Tiwari, S. Khajanchi, Modeling the influence of vaccination coverage on the dynamics of COVID-19 pandemic with the effect of environmental contamination, Math. Methods Appl. Sci., 46 (2023), 12425–12453. https://doi.org/10.1002/mma.9185 doi: 10.1002/mma.9185
    [23] N. Anggriani, M. Z. Ndii, R. Amelia, W. Suryaningrat, M. A. A. Pratama, A mathematical COVID-19 model considering asymptomatic and symptomatic classes with waning immunity, Alexandria Eng. J., 61 (2022), 113–124. https://doi.org/10.1016/j.aej.2021.04.104 doi: 10.1016/j.aej.2021.04.104
    [24] X. Lü, H. W. Hui, F. F. Liu, Y. L. Bai, Stability and optimal control strategies for a novel epidemic model of COVID-19, Nonlinear Dyn., 106 (2021), 1491–1507. https://doi.org/10.1007/s11071-021-06524-x doi: 10.1007/s11071-021-06524-x
    [25] R. K. Rai, S. Khajanchi, P. K. Tiwari, E. Venturino, A. K. Misra, Impact of social media advertisements on the transmission dynamics of COVID-19 pandemic in India, J. Appl. Math. Comput., 68 (2022), 19–44. https://doi.org/10.1007/s12190-021-01507-y doi: 10.1007/s12190-021-01507-y
    [26] G. P. Sahu, J. Dhar, Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, J. Math. Anal. Appl., 421 (2015), 1651–1672. https://doi.org/10.1016/j.jmaa.2014.08.019 doi: 10.1016/j.jmaa.2014.08.019
    [27] R. Liu, J. Wu, H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med., 8 (2007), 153–164. https://doi.org/10.1080/17486700701425870 doi: 10.1080/17486700701425870
    [28] J. Pang, J. A. Cui, An SIRS epidemiological model with nonlinear incidence rate incorporating media coverage, in 2009 Second International Conference on Information and Computing Science, Manchester, UK, 3 (2009), 116–119. https://doi.org/10.1109/ICIC.2009.235
    [29] I. Ghosh, P. K. Tiwari, S. Samanta, I. M. Elmojtaba, N. Al-Salti, J. Chattopadhyay, A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear, Math. Biosci., 306 (2018), 160–169. https://doi.org/10.1016/j.mbs.2018.09.014 doi: 10.1016/j.mbs.2018.09.014
    [30] A. K. Misra, A. Sharma, J. B. Shukla, Stability analysis and optimal control of an epidemic model with awareness programs by media, Biosystems, 138 (2015), 53–62. https://doi.org/10.1016/j.biosystems.2015.11.002 doi: 10.1016/j.biosystems.2015.11.002
    [31] C. Maji, F. A. Basir, D. Mukherjee, K. S. Nisar, C. Ravichandran, COVID-19 propagation and the usefulness of awarenessbased control measures: A mathematical model with delay, AIMS Math., 7 (2022), 12091–12105. https://doi.org/10.3934/math.2022672 doi: 10.3934/math.2022672
    [32] S. Khajanchi, K. Sarkar, J. Mondal, Dynamics of the COVID-19 pandemic in India, preprint, arXiv: 2005.06286v2. https://doi.org/10.48550/arXiv.2005.06286
    [33] W. Wang, S. Ruan, Bifurcations in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004), 775–793. https://doi.org/10.1016/j.jmaa.2003.11.043 doi: 10.1016/j.jmaa.2003.11.043
    [34] W. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), 58–71. https://doi.org/10.1016/j.mbs.2005.12.022 doi: 10.1016/j.mbs.2005.12.022
    [35] X. Zhang, X. Liu, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348 (2008), 433–443. https://doi.org/10.1016/j.jmaa.2008.07.042 doi: 10.1016/j.jmaa.2008.07.042
    [36] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361–404. https://doi.org/10.3934/mbe.2004.1.361 doi: 10.3934/mbe.2004.1.361
    [37] Shanghai Municipal Health Commission, Prevention and control of COVID-19, 2022. Available from: https://wsjkw.sh.gov.cn/yqfk2020/.
    [38] National Health Commission of the People's Republic of China, Prevention and control of the COVID-19 epidemic, 2022. Available from: http://www.nhc.gov.cn/xcs/xxgzbd/gzbd_index.shtml.
    [39] National Bureau of Statistics, China Statistical Yearbook, 2022. Available from: http://www.stats.gov.cn/sj/ndsj/.
    [40] J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright, Convergence properties of the Nelder–Mead simplex method in low dimensions, SIAM J. Optim., 9 (1998), 112–147. https://doi.org/10.1137/S1052623496303470 doi: 10.1137/S1052623496303470
    [41] S. Bera, S. Khajanchi, T. K. Roy, Stability analysis of fuzzy HTLV-I infection model: A dynamic approach, J. Appl. Math. Comput., 69 (2023), 171–199. https://doi.org/10.1007/s12190-022-01741-y doi: 10.1007/s12190-022-01741-y
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(762) PDF downloads(135) Cited by(1)

Article outline

Figures and Tables

Figures(13)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog